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Abstract 

In this paper presents an enhanced k-means 

type algorithm for clustering high-dimensional 

objects. In high dimensional data, clusters of objects 

often exist in subspaces rather than in the entire 

space. This is a data sparsely problem faced in 

clustering high-dimensional data. In the new 

algorithm, we extend the k-means clustering process 

to calculate a weight for each dimension in each 

cluster and use the weight values to identify the 

subsets of important dimensions that categorize 

different clusters. For example, in text clustering, 

clusters of documents of different topics are 

categorized by different subsets of terms or 

keywords. The keywords for one cluster may not 

occur in the documents of other clusters. This is 

achieved by including the weight entropy in the 

objective function that is minimized in the k-means 

clustering process. An additional step is added to 

the k-means clustering process to automatically 

compute the weights of all dimensions in each 

cluster. The experiments on both synthetic and real 

data have shown that the new algorithm can 

generate better clustering results than other 

subspace clustering algorithms.  

 

Index Terms  

k-means clustering, variable weighting, subspace 

clustering, text clustering, high-dimensional data. 

 

Introduction 

High-dimensional data is a phenomenon in 

real-world data mining applications. Text data is a 

typical example. In text mining, a text document is 

viewed as a set of pairs < ti; fi >, where ti is a term 

or word, and fi is a measure of ti, for example, the 

frequency of ti in the document. The total number of 

unique terms in a text data set represents the number 

of dimensions, which is usually in the thousands. 

High-dimensional data occurs in business as well. In 

retail companies, for example, for effective supplier 

relationship management (SRM), suppliers are often 

categorized in groups according to their business 

behaviors. The supplier’s behavior data is high 

dimensional because thousands of attributes are 

used to describe the supplier’s behaviors, including 

product items, ordered amounts, order frequencies, 

product quality, and so forth. Sparsity is an 

accompanying phenomenon of high dimensional 

data. In text data, documents related to a particular 

topic, for instance, sport, are categorized by one 

subset of terms. A group of suppliers are 

categorized by the subset of product items supplied 

by the suppliers. Other suppliers who did not supply 

these product items have zero order amount for 

them in the behavior data [1]. Clearly, clustering of 

high-dimensional sparse data requires special 

treatment [2], [3], [4], [5]. This type of clustering 

methods is referred to as subspace clustering, 

aiming at finding clusters from subspaces of data 

instead of the entire data space. In a subspace 

clustering, each cluster is a set of objects identified 

by a subset of dimensions and different clusters are 

represented in different subsets of dimensions.  

Cluster memberships are determined by the 

similarities of objects measured with respect to 

subspaces. According to the ways that the subspaces 

of clusters are determined, subspace clustering 

methods can be divided into two types. The first 

type is to find out the exact subspaces of different 

clusters (see, for instance, [6], [7], [8], [9]). We call 

these methods as hard subspace clustering. The 

second type is to cluster data objects in the entire 

data space but assign different weighting values to 

different dimensions of clusters in the clustering 

process, based on the importance of the dimensions 

in identifying the corresponding clusters (see, for 

instance, [9], [10]). We call these methods soft 

subspace clustering. In this paper, we present a new 

k-means type algorithm for soft subspace clustering 

of large high-dimensional sparse data. We consider 

that different dimensions make different 
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contributions to the identification of objects in a 

cluster.  

Subspace clustering seeks to group objects 

into clusters on subsets of dimensions or attributes 

of a data set. It pursues two tasks, identification of 

the subsets of dimensions where clusters can be 

found and discovery of the clusters from different 

subsets of dimensions. According to the ways with 

which the subsets of dimensions are identified, we 

can divide subspace clustering methods into two 

categories. The methods in the first category 

determine the exact subsets of dimensions where 

clusters are discovered. We call these methods hard 

subspace clustering. The methods in the second 

category determine the subsets of dimensions 

according to the contributions of the dimensions in 

discovering the corresponding clusters. The 

contribution of a dimension is measured by a weight 

that is assigned to the dimension in the clustering 

process. We call these methods soft subspace 

clustering because every dimension contributes to 

the discovery of clusters, but the dimensions with 

larger weights form the subsets of dimensions of the 

clusters. The method in this paper falls in the second 

category. 

 

1.1 Hard Subspace Clustering 

The subspace clustering methods in this 

category can be further divided into bottom-up and 

top-down subspace search methods [10]. The 

bottom-up methods for subspace clustering consist 

of the following main steps. dividing each 

dimension into intervals and identifying the dense 

intervals in each dimension. From the interactions of 

the dense intervals, identifying the dense cells in all 

two dimensions. From the intersections of 2D dense 

cells and the dense intervals of other dimensions, 

identifying the dense cells in all three dimensions 

and repeating this process until all dense cells in all 

k dimensions are identified, and merging the 

adjacent dense cells in the same subsets of 

dimensions to identify clusters. Examples of the 

bottom-up methods include CLIQUE [6], ENCLUS 

[12], and MAFIA [15]. Local Dimensionality 

Reduction (LDR) [9], [19], like PROCLUS, projects 

each cluster on its associated subspace, which is 

generally different from the subspace associated 

with another cluster. The efficacy of this method 

depends on how the clustering problem is addressed 

in the first place in the original feature space. A 

potentially serious problem with such a technique is 

the lack of data to locally perform PCA on each 

cluster to derive the principal components; 

therefore, it is inflexible in determining the 

dimensionality of data representation. 

A hierarchical subspace clustering approach 

with automatic relevant dimension selection, called 

HARP, was recently presented by Yip et al. [11]. 

HARP is based on the assumption that two objects 

are likely to belong to the same cluster if they are 

very similar to each other along many dimensions. 

Clusters are allowed to merge only if they are 

similar enough in a number of dimensions, where 

the minimum similarity and the minimum number 

of similar dimensions are controlled by two internal 

threshold parameters. Due to the hierarchical nature, 

the algorithm is intrinsically slow. Also, if the 

number of relevant dimensions per cluster is 

extremely low, the accuracy of HARP may drop as 

the basic assumption will become less valid due to 

the presence of a large amount of noise values in the 

data set.  

 

1.2 Soft Subspace Clustering 

Instead of identifying exact subspaces for 

clusters, this approach assigns a weight to each 

dimension in the clustering process to measure the 

contribution of the dimension in forming a 

particular cluster. In a clustering, every dimension 

contributes to every cluster, but contributions are 

different. The subspaces of the clusters can be 

identified by the weight values after clustering. 

Variable weighting for clustering is an important 

research topic in statistics and data mining [13], 

[14], [15], [16]. However, the purpose is to select 

important variables for clustering. Extensions to 

some variable weighting methods, for example, the 

k-means type variable weighting methods, can 

perform the task of subspace clustering. A number 

of algorithms in this direction have been reported 

recently [16], [18], [17], [18]. The direct extension 

to the k-means type variable, weighting algorithm 

[12] for variable selection results from the 

minimization of the following objective function 

[17], [16]. 

 

 
subject to 
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Here, n, k, and m are the numbers of objects, 

clusters, and dimensions, respectively. β(>1) and 

ή(≥1) are two parameters greater than 1. Wlj is the 

degree of membership of the jth object belonging to 

the lth cluster. xij, is value of the ith dimension of the 

object, and z,. is the value of the ith component of 

the Ith cluster center. ή= 1 produces a hard 

clustering, whereas ή >1 results in a fuzzy 

clustering.li is the weight for the ith dimension in the 

lth cluster. z li is value of the ith dimension of the jth 

object, and zli is the value of the ith component of the 

lth
 cluster center. The produces a hard clustering, 

whereas ή>1 results in a fuzzy clustering. There are 

three unknowns W, Z, and that need to be solved. 

The first two can be solved in the same way as used 

in the standard k-means algorithm. The weight , 

for each dimension in each cluster is solved with the 

following formula (it can be derived using the 

Lagrange multiplier technique): 

                      (1) 

where wij and zli represent the values in the current 

iteration. We can observe that the weight value for a 

dimension in a cluster is inversely proportional to 

the dispersion of the values from the center in the 

dimension of the cluster. Since the dispersions are 

different in different dimensions of different 

clusters, the weight values for different clusters are 

different. The high weight indicates a small 

dispersion in a dimension of the cluster. Therefore, 

that dimension is more important in forming the 

cluster. This subspace clustering algorithm has a 

problem in handling sparse data. If the dispersion of 

a dimension in a cluster happens to be zero, then the 

weight for that dimension is not computable. This 

situation occurs frequently in high-dimensional 

sparse data. To make the weights computable, a 

simple method is to add a small constant in the 

distance function to make all dispersions greater 

than zero [17], [18]. 

For instance, the distance is given by 

                     (2) 

In order to minimize (1) and find the solution 

clusters efficiently, Friedman and Meulman 

proposed to use an iterative approach to build a 

weighted dissimilarity matrix among objects. Then, 

a hierarchical clustering method based nearest 

neighbors is used to cluster this matrix. The 

computational process of COSA may not be 

scalable to large data sets. Its computational 

complexity of building the weighted dissimilarity 

matrix is  (n is the number of objects, 

m is the number of dimensionality, L is a predefined 

parameter to find L nearest neighbors objects of a 

given object, and h is the number of iterations), 

where the first term of the complexity is for 

calculating weights of all dimensions for each 

object, and the second term is for creating the 

matrix. In other words, COSA may not be practical 

for large-volume and high-dimensional data.  

 

2. Entropy Weighting K-Means 

In this section, we present a new k-means 

type algorithm for soft subspace clustering of high-

dimensional sparse data. In the new algorithm, we 

consider that the weight of a dimension in a cluster 

represents the probability of contribution of that 

dimension in forming the cluster. The entropy of the 

dimension weights represents the certainty of 

dimensions in the identification of a cluster. 

Therefore, we modify the objective function (2) by 

adding the weight entropy term to it so that we can 

simultaneously minimize the within cluster 

dispersion and maximize the negative weight 

entropy to stimulate more dimensions to contribute 

to the identification of clusters. In this way, we can 

avoid the problem of identifying clusters by few 

dimensions in sparse data. The new objective 

function is written as follows: 

             (3) 

Subject to  

 
The first term in (3) is the sum of the within cluster 

dispersions, and the second term the negative weight 

entropy. The positive parameter controls the 

strength of the incentive for clustering on more 

dimensions. Next, we present the entropy weighting 
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k-means algorithm (EWKM) to solve the above 

minimization problem. 

 

2.1 EWKM Algorithm 

Minimization of F in (2) with the constraints 

forms a class of constrained nonlinear optimization 

problems whose solutions are unknown. The usual 

method toward optimization of F is to use the partial 

optimization for ٨, Z and W. In this method, we first 

fix Z and ٨ and minimize the reduced F with respect 

to W. Then, we fix W and ٨ and minimize the 

reduced F with respect to Z. afterward; we fix W 

and Z and minimize the reduced F to solve ٨ We 

can extend the standard k-means clustering process 

to minimize F by adding an additional step in each 

iteration to compute weights ٨ for each cluster. The 

formula for computing ٨ is given in the following 

theorem: 

Theorem 1: Given matrices W and Z are fixed, F is 

minimized if  

                           (4) 

Where 

                                (5) 

Proof: We use the Lagrangian multiplier technique 

to obtain the following unconstrained minimization 

problem: 

 
Where  is a vector containing the 

Lagrange multipliers corresponding to the 

constraints. The optimization problem in (5) can be 

decomposed into k independent minimization 

problems: 

             (6) 

 

 

                                (7) 

and                (8) 

From (8) we obtain 

           (9) 

Where 

                                (10) 

is interpreted as a measure of the dispersion of the 

data values on the lth dimension on the objects in the 

lth cluster. Substituting (9) into (10), we have 

           (11) 

It follows that 

                        (12) 

Substituting this expression back to (12), we obtain 

                                          (13) 

Similarly to the k-means algorithm, given Z and γ 
are fixed, W is updated as 

              (14) 

wlj =1 means that the jth object is assigned to the lth 

cluster. If the distances between an object and two 

cluster centers are equal, the object is arbitrarily 

assigned to the cluster with the smaller cluster index 

number. Given W and are fixed, Z is updated as 

              (15) 

We note that (14) is independent of the parameter µ 

and the dimension weights  The EWKM 

algorithm that minimizes (12), using (12), (13), and 

(14), is summarized as follows: 

Algorithm—EWKM 

Input: The number of clusters k and parameter γ 



International Journal of Advance Research in Technology (IJART) 

Vol:02, No:02, 2012 

25 | I J A R T  

 

Randomly choose k cluster centers and set all initial 

weights to 1=m; 

Repeat 

Update the partition matrix W by (13); 

Update the cluster centers Z by (14); 

Update the dimension weights _ by (7); 

Until (the objective function obtains its local 

minimum value); 

 

3. Synthetic Data Simulations 

The motivation for development of the 

EWKM algorithm is to cluster high-dimensional 

sparse data. To better understand the properties of 

the algorithm, synthetic data with controlled cluster 

structures and data sparsity were first used to 

investigate the relationships of the dispersion and 

 
Fig. 1. The structure of a synthetic data set where 

the gray areas represent four clusters that are formed 

in different subspaces, and the white areas represent 

the dimensions where data entries are either zeros or 

random values. weights of dimensions in each 

cluster, the behavior of parameter µ and the 

performance of the algorithm on clustering accuracy 

in comparison with other clustering algorithms. 

 

3.1 Sparse Data Generation  

The structure of a synthetic data set has the 

following characteristics: 1) it contains more than 

one cluster, 2) the data values of a cluster are 

concentrated on a subset of relevant dimensions, 

whereas other irrelevant dimensions contain mostly 

zero values with some random positive values, and 

3) the relevant dimensions for different clusters can 

overlap. Fig.1 illustrates an example of a synthetic 

data set with four clusters. A similar process as 

given by Zait and Messatfa [17] was used to 

generate the synthetic data sets with different cluster 

structures. The parameters for controlling cluster 

structures are listed in Table 1.The subspace ratio s 

is defined as 

 
where ml is the number of relevant dimensions in 

the lth cluster, and m is the total number of 

dimensions in the data set. The subspace ratio s 

determines the average size of the subspace of each 

cluster. The overlap ratio  determines the percentage 

of overlap dimensions between two clusters. The 

parameter  controls the percentage of the positive 

values randomly generated for the irrelevant 

dimensions of a cluster.          

 

 
In generating a cluster, the values of relevant 

dimensions conform to a normal distribution with 

given means and variances. The range of mean 

values is specified by parameters MINMU and 

MAXMU. For the random values of irrelevant 

dimensions, the value range is specified by 

parameters MINV and MAXV. The number of 

relevant dimensions ml of a cluster is jointly 

determined by the parameters subspace ratio s and 

overlap ratio  , and a random number between 2 

and m. The number of irrelevant dimensions in the 

lth cluster is  
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A generated synthetic data set is an n-by-m matrix. 

Its sparsity is defined as 

 
Table 2 gives the algorithm for synthetic data 

generation. 

 

3.2 Synthetic Data Sets 

One hundred synthetic data sets were generated 

in each type. Each data set has 135 points, 16 

dimensions, and nine clusters. The subspace ratio s 

was set to 0.375, which is equivalent to the average 

six relevant dimensions in a cluster. The parameter 

MINMU and MAXMU were set to 0 and 100, 

respectively, for all data sets. To study the 

relationship between the value dispersion of a 

dimension and its weight value, we generated the 

following three types of synthetic data by specifying 

different variances for clusters in each data set:  

� Type I. All the relevant dimensions in a 

cluster have equal importance, so we 

assigned the same variance to them. 

�  Type II. Assuming that some relevant 

dimensions are more important than others, 

we assigned small variances to the important 

relevant dimensions and large variances to 

the less important relevant dimensions. 

� Type III. Each relevant dimension is 

randomly assigned a variance. 

The Algorithm for Generating Synthetic Data 

 

Fig. 2. (a), (c), and (e) show the distributions of 

dimensions over different variances for three data 

types, TYPE I, TYPE II, and TYPE III. (b), (d), and 

(f) are the distributions of dimensions against values 

of weights γ= 0:5. 

For the Type II data, the cluster variances 

were randomly selected from three ranges [0.1, 0.2], 

[1, 2], and [5, 6]. For the Type III data, the  luster 

variances were randomly selected from range [0, 6]. 

Parameter was set to 0.01 for generating the random 

values of irrelevant dimensions and the value range 

was set to [0, 5]. 

 

3.3 Simulation Results 

We conducted extensive experiments on the 

100 synthetic data sets, investigated the relationship 

between dimension variances and weight values and 

the property of parameter γ and compared the 

performance of the new algorithm on clustering 

performance with other subspace clustering 

algorithms. Some results are reported below. Fig. 2 

shows the relationships between dimension 

variances and weights in three types of data sets. In 

the 100 data sets, there were a total of 1,800 relevant 

dimensions in 900 clusters. Figs. 2a, 2c, and 2e are 

the distributions of relevant dimensions over 

variance in 

 
Fig. 3. The clustering accuracy of EWKM and 

PROCLUS on the 100 synthetic data sets. 

 

Three types of data sets, whereas Figs. 2b, 2d, and 

2f show the distributions of dimensions over weight 

values. We can see in Fig. 2a that all relevant 

dimensions had the same variance in the Type I data 

sets. This type of data resulted from the fact that 

most dimension weight values were equal or close, 

as shown in Fig. 2b. This indicates that relevant 

dimensions with the same distribution would make a 

similar contribution in identifying clusters in 

subspaces. Fig. 2c shows the distribution of 
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dimensions over variance in the Type II data sets. 

We can observe that the variances for dimensions 

fall in three ranges [0.1, 0.2], [1, 2], and [5, 6]. 

Three peaks in the distribution of dimensions over 

weight values are shown in Fig. 2d. The three peaks 

correspond to the three variance ranges. This 

implies that, from the weight values, we are able to 

relate the weight values to the relevant dimensions 

in the data sets. Because the Type III data sets 

randomly selected the variances for dimensions, the 

distribution of dimensions in Fig. 2f is evenly 

spread in the range [0, 6]. However, the importance 

of relevant dimensions is still identifiable from the 

weight values as shown in Fig. 2f. 

 
Fig. 4. The clustering accuracy of different 

algorithms. 

 

These results indicate that the clustering 

results were very sensitive to l, which makes the 

algorithm difficult to use. Fig. 4 shows the 

comparison results of seven clustering algorithms, 

including EWKM and our previous clustering 

algorithm FWKM [12]. Here,  ith secting k-means 

[16] is not a subspace clustering algorithm. 

PROCLUS [7] and HARP [11] are two hard 

subspace clustering algorithms. LAC [19] and 

COSA [20] are two other soft subspace clustering 

algorithms. We can see that EWKM outperformed 

all other algorithms, although FWKM is very close. 

The performances of LAC and COSA are not 

affected by the data sparsity. However, we find that 

their whole clustering qualities are worse than 

EWKM and FWKM. The reason is that even though 

LAC and COSA deal with sparse problem for high-

dimensional data, they adopt an approximation 

process to minimize their objective functions so that 

some raw information may be missed. The 

clustering accuracy of the two hard subspace 

clustering algorithms PROCLUS and HARP 

dropped quickly as the sparsity increased. These 

results show that EWKM was superior in clustering 

complex data, such as sparse data. 

 

4. Experimental Results on Real-World Data 

In this section, we present the experimental 

results on real world data. We first show the 

comparison results of the EWKM algorithm and 

other clustering algorithms on real text data taken 

from the University of California, Irvine (UCI) 

Machine Learning Repository.1 Then, we present a 

real application to categorize suppliers for a retail 

company in China. We used EWKM to cluster high-

dimensional sparse business transaction data to 

reclassify suppliers based on their business 

behaviors. 

 

 

4.1 Text Data 

The text data was the publicly available 20 

News groups data. The original text data was first 

preprocessed to strip the news messages from the e-

mail headers and special tags and eliminate the stop 

words and stem words to their root forms. Then, the 

words were sorted on the inverse document 

frequency (IDF), and some words were removed if 

the IDF values were too small or too large. The 

BOW toolkit [37] was used in preprocessing. The 

word in each document was weighted by the 

standard  

 

 

 

        
 

Overlapping words (dimensions) in data sets B2 and 

B4. Data sets A4-U and B4-U contain unbalanced 

documents in each category. Table 4 lists other 14 

data sets used to test the scalability of the algorithm. 

In the first group of data sets D1_6, each data set 

contains 15,905 documents in 20 categories. The 
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number of terms in these data sets changes from 500 

to 2,000. In the second group of data sets E1_4, the 

number of These results were consistent with the 

algorithm analysis in Section 3 and demonstrated 

that EWKM is scalable. Meanwhile, when 

compared with the existing soft subspace clustering 

algorithm COSA, These functions can be interpreted 

as follows: The smaller the entropy, the better the 

clustering performance. 

 

 
 

 
Fig. 5. The effect of γ on clustering accuracy. 

 

 
Fig. 6. The weight distributions of keywords in four 

clusters of data set B4. (a) category comp. graphics, 

(b) category comp.os.ms-windows, (c)category rec. 

autos, and (d) category sci.electronics 

 

4.2 Business Transactions Data 

The objective of this analysis was to help a 

food retail company in China to categorize its 

suppliers according to suppliers’ business behaviors. 

Supplier categorization refers to the process of 

dividing suppliers of an organization into different 

groups according to the characteristics of the 

suppliers so that each group of suppliers can be 

managed differently within the organization. 

Supplier categorization is an important step in SRM 

for creating better supplier management strategies to 

reduce the product sourcing risk and costs and 

improve business performance. 

 
Fig. 9. Comparison of existing supplier categories 

with the 16 clusters.  

We can see that suppliers in the same cluster 

are often divided into more than one category in the 
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existing categorization. we applied EWKM to the 

behavior matrix to cluster the 974 suppliers into 60 

clusters. This was because the company already 

classified its suppliers into 60 groups based on 

suppliers’ location and the product categories that 

suppliers can provide. However, suppliers’ business 

behaviors were not considered in the classification. 

Our result was used to readjust the existing 

categorization for better selection of suppliers in 

sourcing. 

 

Conclusions 

In this paper, we have presented Enhanced a 

new k-means type algorithm for high-dimensional 

data. In this algorithm, we simultaneously minimize 

the within cluster dispersion and maximize the 

negative weight entropy in the clustering process. 

Because this clustering process awards more 

dimensions to make contributions to identification 

of each cluster, the problem of identifying clusters 

by few sparse dimensions can be avoided. As such, 

the sparsity problem of high-dimensional data is 

tackled. The experimental results on both synthetic 

and real data sets have shown that the new 

algorithm outperformed other k-means type 

algorithms, for example, Bisecting k-means and 

FWKM, and subspace clustering methods, for 

example, PROCLUS and COSA, in recovering 

clusters. Except for clustering accuracy, the new 

algorithm is scalable to large high-dimensional data 

and easy to use because the input parameter is not 

sensitive. The weight values generated in the 

clustering process are also useful for other purposes, 

for instance, identifying the keywords to represent 

the semantics of text clustering results. 
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