

CONTENTS

Chapter 1: Introduction to Data Base Management Systems 1-29

 1.1 Introduction

 1.2 Data Processing Vs. Data Management Systems

 1.3 File Oriented Approach

 1.4 Database Oriented Approach to Data Management

 1.5 Characteristics of Database

 1.6 Advantages and Disadvantages of a DBMS

 1.7 Disadvantages of a DBMS

 1.8 Instances and Schemas

 1.9 Data Models

 1.10 Database Languages

 1.11 Data Dictionary

 1.12 Database Administrators and Database Users

 1.13 DBMS Architecture and Data Independence

Chapter 2: Data Modeling Using Entity-Relationship Approach 30-55

 2.1 Introduction

 2.2 Data Modeling In the Context of Database Design

 2.3 The Entity-Relationship Model

 2.4 Data Modeling As Part of Database Design

 2.5 Steps in Building the Data Model

 2.6 Developing the Basic Schema

Chapter 3: Structured Query Language 56-80

 3.1 Basic Structure

 3.2 Data Definition Language

 3.3 DML Commands

 3.4 Different Types of Joins

 3.5 Integrity Constraints

 3.6 Stored Procedure

 3.7 Triggers

 3.8 Security

 3.9 Advanced SQL Features

 3.10 Embedded SQL

 3.11 View

Chapter 4: Introduction to Distributed Databases 81-89

 4.1 Distributed Databases

 4.2 Data Replication

 4.3 Data Fragementaion

 4.4 Transparency

 4.5 Client/Server Database

 4.6 Benefits of client/server computing

Chapter 5: Relational Database Design 90-104

 5.1 Pitfalls in Database Design

 5.2 Functional Dependencies

 5.3 Canonical Cover

 5.4 Normalization

Chapter 6: Query Processing 105-116

 6.1 Introduction

 6.2 Query Optimization

Chapter 7: Text and Data Mining 117-136

 7.1 Introduction

 7.2 Historical Development

 7.3 Working Principles

 7.4 Organisations involved in Text and Data Mining

 7.5 The Challenges

 7.6 Implications of Text and Data Mining

Database Management System

B. Santhosh Kumar 1

Chapter-1

Introduction to Data Base Management Systems

A database is an integrated collection of logically related records or

files consolidated into a common pool that provides data for one or more

multiple uses. You can think of a database as an electronic filing system.

1.1 Introduction

A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data. This is a

collection of related data with an implicit meaning and hence is a database.

The collection of data, usually referred to as the database, contains

information relevant to an enterprise. The primary goal of a DBMS is to

provide a way to store and retrieve database information that is both

convenient and efficient. By data, we mean known facts that can be

recorded and that have implicit meaning. For example, consider the names,

telephone numbers, and addresses of the people you know. You may have

recorded this data in an indexed address book, or you may have stored it on

a diskette, using a personal computer and software such as DBASE IV or

V, Microsoft ACCESS, or EXCEL.

A datum – a unit of data – is a symbol or a set of symbols which is

used to represent something. This relationship between symbols and what

they represent is the essence of what we mean by information. Hence,

information is interpreted data – data supplied with semantics. Knowledge

refers to the practical use of information. While information can be

transported, stored or shared without many difficulties the same cannot be

said about knowledge. Knowledge necessarily involves a personal

experience. Referring back to the scientific experiment, a third person

reading the results will have information about it, while the person who

conducted the experiment personally will have knowledge about it.

Database systems are designed to manage large bodies of

information. Management of data involves both defining structures for

Database Management System

B. Santhosh Kumar 2

storage of information and providing mechanisms for the manipulation of

information. In addition, the database system must ensure the safety of the

information stored, despite system crashes or attempts at unauthorized

access. If data are to be shared among several users, the system must avoid

possible anomalous results.

Because information is so important in most organizations,

computer scientists have developed a large body of concepts and

techniques for managing data. These concepts and technique form the focus

of this book. This chapter briefly introduces the principles of database

systems.

1.2 Data Processing Vs. Data Management Systems

Although Data Processing and Data Management Systems both

refer to functions that take raw data and transform it into usable

information, the usage of the terms is very different. Data Processing is the

term generally used to describe what was done by large mainframe

computers from the late 1940's until the early 1980's (and which continues

to be done in most large organizations to a greater or lesser extent even

today): large volumes of raw transaction data fed into programs that update

a master file, with fixed format reports written to paper.

The term Data Management Systems refers to an expansion of this

concept, where the raw data, previously copied manually from paper to

punched cards, and later into data entry terminals, is now fed into the

system from a variety of sources, including ATMs, EFT, and direct

customer entry through the Internet. The master file concept has been

largely displaced by database management systems, and static reporting

replaced or augmented by ad-hoc reporting and direct inquiry, including

downloading of data by customers. The ubiquities of the Internet and the

Personal Computer have been the driving force in the transformation of

Data Processing to the more global concept of Data Management Systems.

Database Management System

B. Santhosh Kumar 3

1.3 File Oriented Approach

The earliest business computer systems were used to process

business records and produce information. They were generally faster and

more accurate than equivalent manual systems. These systems stored

groups of records in separate files, and so they were called file processing

systems. In a typical file processing systems, each department has its own

files, designed specifically for those applications. The department itself

works with the data processing staff, sets policies or standards for the

format and maintenance of its files.

Programs are dependent on the files and vice-versa; that is, when

the physical format of the file is changed, the program has also to be

changed. Although the traditional file oriented approach to information

processing is still widely used, it does have some very important

disadvantages.

1.4 Database Oriented Approach to Data Management

Consider part of a savings-bank enterprise that keeps information

about all customers and savings accounts. One way to keep the information

on a computer is to store it in operating system files. To allow users to

manipulate the information, the system has a number of application

programs that manipulate the files, including

 A program to debit or credit an account

 A program to add a new account

 A program to find the balance of an account

 A program to generate monthly statements

System programmers wrote these application programs to meet the needs of

the bank.

New application programs are added to the system as the need

arises. For example, suppose that the savings bank decides to offer

Database Management System

B. Santhosh Kumar 4

checking accounts. As a result, the bank creates new permanent files that

contain information about all the checking accounts maintained in the bank,

and it may have to write new application programs to deal with situations

that do not arise in savings accounts, such as overdrafts. Thus, as time goes

by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional

operating system. The system stores permanent records in various files, and

it needs different application programs to extract records from, and add

records to, the appropriate files. Before database management systems

(DBMSs) came along, organizations usually stored information in such

systems.

Keeping organizational information in a file-processing system has

a number of major disadvantages:

 Data redundancy and inconsistency.

Since different programmers create the files and application programs

over a long period, the various files are likely to have different formats and

the programs may be written in several programming languages. Moreover,

the same information may be duplicated in several places (files). For

example, the address and telephone number of a particular customer may

appear in a file that consists of savings-account records and in a file that

consists of checking-account records. This redundancy leads to higher

storage and access cost. In addition, it may lead to data inconsistency; that

is, the various copies of the same data may no longer agree. For example, a

changed customer address may be reflected in savings-account records but

not elsewhere in the system.

 Difficulty in accessing data.

 Suppose that one of the bank officers needs to find out the names of all

customers who live within a particular postal-code area. The officer asks

the data-processing department to generate such a list. Because the

designers of the original system did not anticipate this request, there is no

Database Management System

B. Santhosh Kumar 5

application program on hand to meet it. There is, however, an application

program to generate the list of all customers. The bank officer has now two

choices: either obtain the list of all customers and extract the needed

information manually or ask a system programmer to write the necessary

application program.

 Both alternatives are obviously unsatisfactory.

Suppose that such a program is written, and that, several days later,

the same officer needs to trim that list to include only those customers who

have an account balance of $10,000 or more. As expected, a program to

generate such a list does not exist.

Again, the officer has the preceding two options, neither of which

is satisfactory. The point here is that conventional file-processing

environments do not allow needed data to be retrieved in a convenient and

efficient manner. More responsive data-retrieval systems are required for

general use.

 Data isolation.

Because data are scattered in various files, and files may be in

different formats, writing new application programs to retrieve the

appropriate data is difficult.

 Integrity problems.

The data values stored in the database must satisfy certain types of

consistency constraints. For example, the balance of a bank account may

never fall below a prescribed amount (say, $25). Developers enforce these

constraints in the system by adding appropriate code in the various

application programs.

However, when new constraints are added, it is difficult to change

the programs to enforce them. The problem is compounded when

constraints involve several data items from different files.

Database Management System

B. Santhosh Kumar 6

 Atomicity problems.

A computer system, like any other mechanical or electrical device,

is subject to failure. In many applications, it is crucial that, if a failure

occurs, the data be restored to the consistent state that existed prior to the

failure. Consider a program to transfer $50 from account A to account B.

If a system failure occurs during the execution of the program, it is

possible that the $50 was removed from account A, but was not credited to

account B, resulting in an inconsistent database state. Clearly, it is essential

to database consistency that either both the credit and debit occur, or that

neither occur. That is, the funds transfer must be atomic—it must happen in

its entirety or not at all. It is difficult to ensure atomicity in a conventional

file-processing system.

 Concurrent-access anomalies.

For the sake of overall performance of the system and faster

response, many systems allow multiple users to update the data

simultaneously. In such an environment, interaction of concurrent updates

may result in inconsistent data. Consider bank account A, containing $500.

If two customers withdraw funds (say $50 and $100 respectively) from

account A at about the same time, the result of the concurrent executions

may leave the account in an incorrect (or inconsistent) state.

Suppose that the programs executing on behalf of each withdrawal

read the old balance, reduce that value by the amount being withdrawn, and

write the result back. If the two programs run concurrently, they may both

read the value $500, and write back $450 and $400, respectively.

Depending on which one writes the value last, the account may contain

$450 or $400, rather than the correct value of $350. To guard against this

possibility, the system must maintain some form of supervision. But

supervision is difficult to provide because data may be accessed by many

different application programs that have not been coordinated previously.

Database Management System

B. Santhosh Kumar 7

 Security problems.

Not every user of the database system should be able to access all

the data. For example, in a banking system, payroll personnel need to see

only that part of the database that has information about the various bank

employees. They do not need access to information about customer

accounts. But, since application programs are added to the system in an ad

hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of

database systems. In what follows, we shall see the concepts and

algorithms that enable database systems to solve the problems with file-

processing systems. In most of this book, we use a bank enterprise as a

running example of a typical data-processing application found in a

corporation.

1.5 Characteristics of Database

The database approach has some very characteristic features which

are discussed in detail below:

Concurrent Use

A database system allows several users to access the database

concurrently. Answering different questions from different users with the

same (base) data is a central aspect of an information system. Such

concurrent use of data increases the economy of a system.

An example for concurrent use is the travel database of a bigger

travel agency. The employees of different branches can access the database

concurrently and book journeys for their clients. Each travel agent sees on

his interface if there are still seats available for a specific journey or if it is

already fully booked.

Structured and Described Data

A fundamental feature of the database approach is that the database

systems do not only contain the data but also the complete definition and

Database Management System

B. Santhosh Kumar 8

description of these data. These descriptions are basically details about the

extent, the structure, the type and the format of all data and, additionally,

the relationship between the data. This kind of stored data is called

metadata ("data about data").

Separation of Data and Applications

As described in the feature structured data the structure of a

database is described through metadata which is also stored in the database.

Application software does not need any knowledge about the physical data

storage like encoding, format, storage place, etc. It only communicates with

the management system f a database (DBMS) via a standardized interface

with the help of a standardized language like SQL. The access to the data

and the metadata is entirely done by the DBMS. In this way all the

applications can be totally separated from the data. Therefore database

internal reorganizations or improvement of efficiency do not have any

influence on the application software.

Data Integrity

Data integrity is a byword for the quality and the reliability of the

data of a database system. In a broader sense data integrity includes also the

protection of the database from unauthorized access (confidentiality) and

unauthorized changes. Data reflect facts of the real world database.

Transactions

A transaction is a bundle of actions which are done within a

database to bring it from one consistent state to a new consistent state. In

between the data are inevitable inconsistent. A transaction is atomic what

means that it cannot be divided up any further. Within a transaction all or

none of the actions need to be carried out. Doing only a part of the actions

would lead to an inconsistent database state. One example of a transaction

is the transfer of an amount of money from one bank account to another.

The debit of the money from one account and the credit of it to another

account make together a consistent transaction. This transaction is also

Database Management System

B. Santhosh Kumar 9

atomic. The debit or credit alone would both lead to an inconsistent state.

After finishing the transaction (debit and credit) the changes to both

accounts become persistent and the one who gave the money has now less

money on his account while the receiver has now a higher balance.

Data Persistence

Data persistence means that in a DBMS all data is maintained as

long as it is not deleted explicitly. The life span of data needs to be

determined directly or indirectly be the user and must not be dependent on

system features. Additionally data once stored in a database must not be

lost. Changes of a database which are done by a transaction are persistent.

When a transaction is finished even a system crash cannot put the data in

danger.

1.6 Advantages and Disadvantages of a DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as

possible from details of data representation and storage. The DBMS can

provide an abstract view of the data to insulate application code from such

details.

Efficient data access: A DBMS utilizes a variety of sophisticated

techniques to store and retrieve data efficiently. This feature is especially

important if the data is stored on external storage devices.

Data integrity and security: If data is always accessed through the

DBMS, the DBMS can enforce integrity constraints on the data. For

example, before inserting salary information for an employee, the DBMS

can check that the department budget is not exceeded. Also, the DBMS can

enforce access controls that govern what data is visible to different classes

of users.

Data administration: When several users share the data, centralizing the

administration of data can offer significant improvements. Experienced

Database Management System

B. Santhosh Kumar 10

professionals, who understand the nature of the data being managed, and

how different groups of users use it, can be responsible for organizing the

data representation to minimize redundancy and fine tuning the storage of

the data to make retrieval efficient.

Concurrent access and crash recovery: A DBMS schedules concurrent

accesses to the data in such a manner that users can think of the data as

being accessed by only one user at a time. Further, the DBMS protects

users from the effects of system failures.

Reduced application development time: Clearly, the DBMS supports

many important functions that are common to many applications accessing

data stored in the DBMS. This, in conjunction with the high-level interface

to the data, facilitates quick development of applications. Such applications

are also likely to be more robust than applications developed from scratch

because many important tasks are handled by the DBMS instead of being

implemented by the application.

A DBMS is a complex piece of software, optimized for certain

kinds of workloads (e.g., answering complex queries or handling many

concurrent requests), and its performance may not be adequate for certain

specialized applications. Examples include applications with tight real-time

constraints or applications with just a few well-designed critical operations

for which efficient custom code must be written. Another reason for not

using a DBMS is that an application may need to manipulate the data in

ways not supported by the query language.

In such a situation, the abstract view of the data presented by the

DBMS does not match the application's needs, and actually gets in the way.

As an example, relational databases do not support flexible analysis of text

data (although vendors are now extending their products in this direction).

If specialized performance or data manipulation requirements are central to

an application, the application may choose not to use a DBMS, especially if

the added benefits of a DBMS (e.g., flexible querying, security, concurrent

access, and crash recovery) are not required. In most situations calling for

Database Management System

B. Santhosh Kumar 11

large-scale data management, however, DBMSs have become an

indispensable tool.

1.7 Disadvantages of a DBMS

Danger of Overkill: For small and simple applications for single users a

database system is often not advisable.

Complexity: A database system creates additional complexity and

requirements. The supply and operation of a database management system

with several users and databases is quite costly and demanding.

Qualified Personnel: The professional operation of a database system

requires appropriately trained staff. Without a qualified database

administrator nothing will work for long.

Costs: Through the use of a database system new costs are generated for

the system itself but also for additional hardware and the more complex

handling of the system.

Lower Efficiency: A database system is a multi-use software which is

often less efficient than specialized software which is produced and

optimized exactly for one problem.

1.8 Instances and Schemas

Databases change over time as information is inserted and deleted.

The collection of information stored in the database at a particular moment

is called an instance of the database. The overall design of the database is

called the database schema. Schemas are changed infrequently, if at all.

The concept of database schemas and instances can be understood by

analogy to a program written in a programming language.

 A database schema corresponds to the variable declarations (along

with associated type definitions) in a program. Each variable has a

particular value at a given instant. The values of the variables in a program

at a point in time correspond to an instance of a database schema. Database

systems have several schemas, partitioned according to the levels of

Database Management System

B. Santhosh Kumar 12

abstraction. The physical schema describes the database design at the

physical level, while the logical schema describes the database design at the

logical level. A database may also have several schemas at the view level,

sometimes called subschemas that describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its

effect on application programs, since programmers construct applications

by using the logical schema. The physical schema is hidden beneath the

logical schema, and can usually be changed easily without affecting

application programs. Application programs are said to exhibit physical

data independence if they do not depend on the physical schema, and thus

need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the

notion of data models in the next section.

1.9 Data Models

Underlying the structure of a database is the data model: a

collection of conceptual tools for describing data, data relationships, data

semantics, and consistency constraints. To illustrate the concept of a data

model, we outline two data models in this section: the entity-relationship

model and the relational model. Both provide a way to describe the design

of a database at the logical level.

The Entity-Relationship Model

The entity-relationship (E-R) data model is based on a perception

of a real world that consists of a collection of basic objects, called entities,

and of relationships among these objects. An entity is a “thing” or “object”

in the real world that is distinguishable from other objects. For example,

each person is an entity, and bank accounts can be considered as

entities.Entities are described in a database by a set of attributes. For

example, the attributes account-number and balance may describe one

particular account in a bank, and they form attributes of the account entity

Database Management System

B. Santhosh Kumar 13

set. Similarly, attributes customer-name, customer-street address and

customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely identify

customers (since it may be possible to have two customers with the same

name, street address, and city). A unique customer identifier must be

assigned to each customer. In the United States, many enterprises use the

social-security number of a person (a unique number the U.S. government

assigns to every person in the United States) as a customer identifier.A

relationship is an association among several entities. For example, a

depositor relationship associates a customer with each account that she has.

The set of all entities of the same type and the set of all relationships of the

same type are termed an entity set and relationship set, respectively. The

overall logical structure (schema) of a database can be expressed

graphically by an E-R diagram.

Relational Model

The relational model uses a collection of tables to represent both

data and the relationships among those data. Each table has multiple

columns, and each column has a unique name. The data is arranged in a

relation which is visually represented in a two dimensional table. The data

is inserted into the table in the form of tuples (which are nothing but rows).

A tuple is formed by one or more than one attributes, which are used as

basic building blocks in the formation of various expressions that are used

to derive meaningful information.

There can be any number of tuples in the table, but all the tuple

contain fixed and same attributes with varying values. The relational model

is implemented in database where a relation is represented by a table, a

tuple is represented by a row, an attribute is represented by a column of the

table, attribute name is the name of the column such as ‘identifier’, ‘name’,

‘city’ etc., attribute value contains the value for column in the row.

Constraints are applied to the table and form the logical schema.

Database Management System

B. Santhosh Kumar 14

In order to facilitate the selection of a particular row/tuple from the

table, the attributes i.e. column names are used, and to expedite the

selection of the rows some fields are defined uniquely to use them as

indexes, this helps in searching the required data as fastas possible. All the

relational algebra operations, such as Select, Intersection, Product, Union,

Difference, Project, Join, Division, Merge etc. can also be performed on the

Relational Database Model. Operations on the Relational Database Model

are facilitated with the help of different conditional expressions, various

key attributes, pre-defined n constraints etc.

Other Data Models

The object-oriented data model is another data model that has seen

increasing attention. The object-oriented model can be seen as extending

the E-R model with notions object oriented data model. The object-

relational data model combines features of the object-oriented data model

and relational data model. Semi structured data models permit the

specification of data where individual data items of the same type may have

different sets of attributes.

This is in contrast with the data models mentioned earlier, where

every data item of a particular type must have the same set of attributes.

The extensible markup language (XML) is widely used to represent semi

structured data. Historically, two other data models, the network data model

and the hierarchical data model, preceded the relational data model. These

models were tied closely to the underlying implementation, and

complicated the task of modeling data. As a result they are little used now,

except in old database code that is still in service in some places. They are

outlined in Appendices A and B, for interested readers.

1.10 Database Languages

A database system provides a data definition language to specify

the database schema and a data manipulation language to express database

queries and updates. In practice, the data definition and data manipulation

Database Management System

B. Santhosh Kumar 15

languages are not two separate languages; instead they simply form parts of

a single database language, such as the widely used SQL language.

Data-Definition Language

We specify a database schema by a set of definitions expressed by

a special language called a data-definition language (DDL). For instance,

the following statement in the SQL language defines the account table:

create table account (account-number char(10), balance integer)

Execution of the above DDL statement creates the account table. In

addition, it updates a special set of tables called the data dictionary or data

directory. A data dictionary contains metadata—that is, data about data.

The schema of a table is an example of metadata. A database system

consults the data dictionary before reading or modifying actual data.

We specify the storage structure and access methods used by the

database system by a set of statements in a special type of DDL called a

data storage and definition language. These statements define the

implementation details of the database schemas, which are usually hidden

from the users. The data values stored in the database must satisfy certain

consistency constraints. For example, suppose the balance on an account

should not fall below $100. The DDL provides facilities to specify such

constraints. The database systems check these constraints every time the

database is updated.

Data-Manipulation Language

Data manipulation is

 The retrieval of information stored in the database

 The insertion of new information into the database

 The deletion of information from the database

 The modification of information stored in the database

Database Management System

B. Santhosh Kumar 16

A data-manipulation language (DML) is a language that enables

users to access or manipulate data as organized by the appropriate data

model. There are basically two types:

Procedural DMLs require a user to specify what data are needed

and how to get those data. Declarative DMLs (also referred to as

nonprocedural DMLs) require a user to specify what data are needed

without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are

procedural DMLs. However, since a user does not have to specify how to

get the data, the database system has to figure out an efficient means of

accessing data. The DML component of the SQL language is

nonprocedural.

A query is a statement requesting the retrieval of information. The

portion of a DML that involves information retrieval is called a query

language. Although technically incorrect, it is common practice to use the

terms query language and data manipulation language synonymously.

This query in the SQL language finds the name of the customer

whose cust_id is 192-83-7465:

select cust.customer-name from customer where cust.customer_id =

192-83-7465

The query specifies that those rows from the table customer where

the customer-id is 192-83-7465 must be retrieved, and the customer-name

attribute of these rows must be displayed.

Queries may involve information from more than one table. For

instance, the following query finds the balance of all accounts owned by the

customer with cust_id 192-83- 7465.

select account.balance from depositor, account where

depositor.cust_id = 192-83-7465 and depositor.account-number =

account.account-number

Database Management System

B. Santhosh Kumar 17

There are a number of database query languages in use, either

commercially or experimentally.

The levels of abstraction apply not only to defining or structuring

data, but also to manipulating data. At the physical level, we must define

algorithms that allow efficient access to data. At higher levels of

abstraction, we emphasize ease of use. The goal is to allow humans to

interact efficiently with the system. The query processor component of the

database system translates DML queries into sequences of actions at the

physical level of the database system.

1.11 Data Dictionary

 We can define a data dictionary as a DBMS component that stores

the definition of data characteristics and relationships. You may recall that

such “data about data” were labeled metadata. The DBMS data dictionary

provides the DBMS with its self-describing characteristic. In effect, the

data dictionary resembles and X-ray of the company’s entire data set, and is

a crucial element in the data administration function.

The two main types of data dictionary exist, integrated and stand

alone. An integrated data dictionary is included with the DBMS. For

example, all relational DBMSs include a built in data dictionary or system

catalog that is frequently accessed and updated by the RDBMS. Other

DBMSs especially older types, do not have a built in data dictionary

instead the DBA may use third party stand-alone data dictionary systems.

Data dictionaries can also be classified as active or passive. An

active data dictionary is automatically updated by the DBMS with every

database access, thereby keeping its access information up-to-date. A

passive data dictionary is not updated automatically and usually requires a

batch process to be run. Data dictionary access information is normally

used by the DBMS for query optimization purpose.

The data dictionary’s main function is to store the description of all

objects that interact with the database. Integrated data dictionaries tend to

Database Management System

B. Santhosh Kumar 18

limit their metadata to the data managed by the DBMS. Stand-alone data

dictionary systems are more usually more flexible and allow the DBA to

describe and manage all the organization’s data, whether or not they are

computerized. Whatever the data dictionary’s format, its existence provides

database designers and end users with a much improved ability to

communicate. In addition, the data dictionary is the tool that helps the DBA

to resolve data conflicts. Although, there is no standard format for the

information stored in the data dictionary several features are common.

For example, the data dictionary typically stores descriptions of all:

• Data elements that are define in all tables of all databases.

Specifically the data dictionary stores the name, datatypes, display formats,

internal storage formats, and validation rules. The data dictionary tells

where an element is used, by whom it is used and so on.

• Tables define in all databases. For example, the data dictionary is

likely to store the name of the table creator, the date of creation access

authorizations, the number of columns, and so on.

• Indexes define for each database tables. For each index the

DBMS stores at least the index name the attributes used, the location,

specific index characteristics and the creation date.

• Define databases: who created each database, the date of creation

where the database is located, who the DBA is and so on.

• End users and The Administrators of the data base

• Programs that access the database including screen formats,

report formats application formats, SQL queries and so on.

• Access authorization for all users of all databases.

• Relationships among data elements which elements are involved:

whether the relationships are mandatory or optional, the connectivity and

cardinality and so on.

Database Management System

B. Santhosh Kumar 19

If the data dictionary can be organized to include data external to

the DBMS itself, it becomes an especially flexible to for more general

corporate resource management. The management of such an extensive

data dictionary, thus, makes it possible to manage the use and allocation of

all of the organization information regardless whether it has its roots in the

database data. This is why some managers consider the data dictionary to

be the key element of the information resource management function. And

this is also why the data dictionary might be described as the information

resource dictionary.

The metadata stored in the data dictionary is often the bases for

monitoring the database use and assignment of access rights to the database

users. The information stored in the database is usually based on the

relational table format, thus, enabling the DBA to query the database with

SQL command. For example, SQL command can be used to extract

information about the users of the specific table or about the access rights

of particular users.

1.12 Database Administrators and Database Users

A primary goal of a database system is to retrieve information from

and store new information in the database. People who work with a

database can be categorized as database users or database administrators.

Database Users and User Interfaces

There are four different types of database-system users,

differentiated by the way they expect to interact with the system. Different

types of user interfaces have been designed for the different types of users.

Naive users are unsophisticated users who interact with the system

by invoking one of the application programs that have been written

previously. For example, a bank teller who needs to transfer $50 from

account A to account B invokes a program called transfer. This program

asks the teller for the amount of money to be transferred, the account from

Database Management System

B. Santhosh Kumar 20

which the money is to be transferred, and the account to which the money

is to be transferred.

As another example, consider a user who wishes to find her

account balance over the World Wide Web. Such a user may access a form,

where she enters her account number. An application program at the Web

server then retrieves the account balance, using the given account number,

and passes this information back to the user. The typical user interface for

naive users is a forms interface, where the user can fill in appropriate fields

of the form. Naive users may also simply read reports generated from the

database.

Application programmers are computer professionals who write

application programs. Application programmers can choose from many

tools to develop user interfaces. Rapid application development (RAD)

tools are tools that enable an application programmer to construct forms

and reports without writing a program. There are also special types of

programming languages that combine imperative control structures (for

example, for loops, while loops and if-then-else statements) with

statements of the data manipulation language. These languages, sometimes

called fourth-generation languages, often include special features to

facilitate the generation of forms and the display of data on the screen.

Most major commercial database systems include a fourth generation

language.

Sophisticated users interact with the system without writing

programs. Instead, they form their requests in a database query language.

They submit each such query to a query processor, whose function is to

break down DML statements into instructions that the storage manager

understands. Analysts who submit queries to explore data in the database

fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks

by letting them view summaries of data in different ways. For instance, an

analyst can see total sales by region (for example, North, South, East, and

Database Management System

B. Santhosh Kumar 21

West), or by product, or by a combination of region and product (that is,

total sales of each product in each region). The tools also permit the analyst

to select specific regions, look at data in more detail (for example, sales by

city within a region) or look at the data in less detail (for example,

aggregate products together by category).

Another class of tools for analysts is data mining tools, which help

them, find certain kinds of patterns in data.

Specialized users are sophisticated users who write specialized

database applications that do not fit into the traditional data-processing

framework. Among these applications are computer-aided design systems,

knowledge base and expert systems, systems that store data with complex

data types (for example, graphics data and audio data), and environment-

modeling systems.

Database Administrator

One of the main reasons for using DBMSs is to have central

control of both the data and the programs that access those data. A person

who has such central control over the system is called a database

administrator (DBA). The functions of a DBA include: Schema definition.

The DBA creates the original database schema by executing a set of data

definition statements in the DDL.

 Storage structure and access-method definition.

 Schema and physical-organization modification.

The DBA carries out changes to the schema and physical

organization to reflect the changing needs of the organization, or to alter the

physical organization to improve performance.

Granting of authorization for data access.

By granting different types of authorization, the database

administrator can regulate which parts of the database various users can

access. The authorization information is kept in a special system structure

Database Management System

B. Santhosh Kumar 22

that the database system consults whenever someone attempts to access the

data in the system.

Routine maintenance.

Examples of the database administrator’s routine maintenance

activities are: Periodically backing up the database, either onto tapes or

onto remote servers, to prevent loss of data in case of disasters such as

flooding. Ensuring that enough free disk space is available for normal

operations and upgrading disk space as required. Monitoring jobs running

on the database and ensuring that performance is not degraded by very

expensive tasks submitted by some users.

1.13 DBMS Architecture and Data Independence

Three important characteristics of the database approach are (1)

insulation of programs and data (program-data and program-operation

independence); (2) support of multiple user views; and (3) use of a catalog

to store the database description (schema). In this section we specify

architecture for database systems, called the three-schema architecture,

which was proposed to help achieve and visualize these characteristics. We

then discuss the concept of data independence.

The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 1.1, is to

separate the user applications and the physical database. In this

architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the

physical storage structure of the database. The internal schema uses a

physical data model and describes the complete details of data

storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the

structure of the whole database for a community of users. The

conceptual schema hides the details of physical storage structures

Database Management System

B. Santhosh Kumar 23

and concentrates on describing entities, data types, relationships, user

operations, and constraints. A high-level data model or an

implementation data model can be used at this level.

3. The external or view level includes a number of external schemas or

user views.

Each external schema describes the part of the database that a

particular user group is interested in and hides the rest of the database from

that user group. A high-level data model or an implementation data model

can be used at this level.

Figure 1.1 Three Schema Architecture

The three-schema architecture is a convenient tool for the user to

visualize the schema levels in a database system. Most DBMSs do not

separate the three levels completely, but support the three-schema

architecture to some extent. Some DBMSs may include physical-level

details in the conceptual schema. In most DBMSs that support user views,

external schemas are specified in the same data model that describes the

Database Management System

B. Santhosh Kumar 24

conceptual-level information. Some DBMSs allow different data models to

be used at the conceptual and external levels.

Notice that the three schemas are only descriptions of data; the only

data that actually exists is at the physical level. In a DBMS based on the

three-schema architecture, each user group refers only to its own external

schema. Hence, the DBMS must transform a request specified on an

external schema into a request against the conceptual schema, and then into

a request on the internal schema for processing over the stored database. If

the request is database retrieval, the data extracted from the stored database

must be reformatted to match the user’s external view. The processes of

transforming requests and results between levels are called mappings.

These mappings may be time consuming, so some DBMSs—especially

those that are meant to support small databases—do not support external

views. Even in such systems, however, a certain amount of mapping is

necessary to transform requests between the conceptual and internal levels.

Data Independence

The three-schema architecture can be used to explain the concept

of data independence, which can be defined as the capacity to change the

schema at one level of a database system without having to change the

schema at the next higher level. We can define two types of data

independence:

1. Logical data independence is the capacity to change the

conceptual schema without having to change external schemas or

application programs. We may change the conceptual schema to expand the

database (by adding a record type or data item), or to reduce the database

(by removing a record type or data item). In the latter case, external

schemas that refer only to the remaining data should not be affected. Only

the view definition and the mappings need be changed in a DBMS that

supports logical data independence. Application programs that reference

the external schema constructs must work as before, after the conceptual

schema undergoes a logical reorganization. Changes to constraints can be

Database Management System

B. Santhosh Kumar 25

applied also to the conceptual schema without affecting the external

schemas or application programs.

2. Physical data independence is the capacity to change the internal

schema without having to change the conceptual (or external) schemas.

Changes to the internal schema may be needed because some physical files

had to be reorganized—for example, by creating additional access

structures—to improve the performance of retrieval or update. If the same

data as before remains in the database, we should not have to change the

conceptual schema.

Fig 1.2 Overall System Structure

Database Management System

B. Santhosh Kumar 26

Whenever we have a multiple-level DBMS, its catalog must be

expanded to include information on how to map requests and data among

the various levels. The DBMS uses additional software to accomplish these

mappings by referring to the mapping information in the catalog. Data

independence is accomplished because, when the schema is changed at

some level, the schema at the next higher level remains unchanged; only

the mapping between the two levels is changed. Hence, application

programs referring to the higher-level schema need not be changed.

The three-schema architecture can make it easier to achieve true

data independence, both physical and logical. However, the two levels of

mappings create an overhead during compilation or execution of a query or

program, leading to inefficiencies in the DBMS. Because of this, few

DBMSs have implemented the full three-schema architecture.

Types of Database System

Several criteria are normally used to classify DBMSs. The first is

the data model on which the DBMS is based. The main data model used in

many current commercial DBMSs is the relational data model. The object

data model was implemented in some commercial systems but has not had

widespread use. Many legacy (older) applications still run on database

systems based on the hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in

particular, have been incorporating many of the concepts that were

developed in object databases. This has led to a new class of DBMSs called

object-relational DBMSs. We can hence categorize DBMSs based on the

data model: relational, object, object-relational, hierarchical, network, and

other.

The second criterion used to classify DBMSs is the number of

users supported by the system. Single-user systems support only one user at

a time and are mostly used with personal computers. Multiuser systems,

which include the majority of DBMSs, support multiple users concurrently.

Database Management System

B. Santhosh Kumar 27

A third criterion is the number of sites over which the database is

distributed. A DBMS is centralized if the data is stored at a single computer

site.

A centralized DBMS can support multiple users, but the DBMS

and the database themselves reside totally at a single computer site. A

distributed DBMS (DDBMS) can have the actual database and DBMS

software distributed over many sites, connected by a computer network.

Homogeneous DDBMSs use the same DBMS software at multiple sites.

A recent trend is to develop software to access several autonomous

preexisting databases stored under heterogeneous IBMSs. This leads to a

federated DBMS (or multi database system), in which the participating

DBMSs are loosely coupled and have a degree of local autonomy. Many

DBMSs use client-server architecture.

Summary

In this chapter we have discussed in a relatively informal manner

the major components of a database system. We summaries the discussion

below:

 A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data. This is

a collection of related data with an implicit meaning and hence is a

database.

 A datum – a unit of data – is a symbol or a set of symbols which is

used to represent something. This relationship between symbols

and what they represent is the essence of what we mean by

information.

 Knowledge refers to the practical use of information.

 The collection of information stored in the database at a particular

moment is called an instance of the database. The overall design of

the database is called the database schema.

Database Management System

B. Santhosh Kumar 28

 The physical schema describes the database design at the physical

level, while the logical schema describes the database design at the

logical level. A database may also have several schemas at the view

level, sometimes called subschemas that describe different views of

the database.

 Application programs are said to exhibit physical data

independence if they do not depend on the physical schema, and

thus need not be rewritten if the physical schema changes.

 Underlying the structure of a database is the data model: a

collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints.

 A database system provides a data definition language to specify

the database schema and a data manipulation language to express

database queries and updates.

 One of the main reasons for using DBMSs is to have central control

of both the data and the programs that access those data. A person

who has such central control over the system is called a database

administrator (DBA).

1.15 Key Words

DBMS, Data Integrity, Data Persistence, Instances, Schemas,

Physical Schema, Logical Schema, Data Model, DDL, DML, Data

Dictionary

1.16 Self-Assessment Questions

1. Why would you choose a database system instead of simply storing

data in operating system files? When would it make sense not to

use a database system?

2. What is logical data independence and why is it important?

3. Explain the difference between logical and physical data

independence.

Database Management System

B. Santhosh Kumar 29

4. Explain the difference between external, internal, and conceptual

schemas. How are these different schema layers related to the

concepts of logical and physical data independence?

5. What are the responsibilities of a DBA?

6. Distinguish between logical and physical database design.

7. Describe and define the key properties of a database system. Give

an organizational example of the benefits of each property.

Database Management System

B. Santhosh Kumar 30

Chapter 2:

Data Modeling Using Entity-Relationship Approach

2.1 Introduction

A data model is a conceptual representation of the data structures

that are required by a database. The data structures include the data objects,

the associations between data objects, and the rules which govern

operations on the objects. As the name implies, the data model focuses on

what data is required and how it should be organized rather than what

operations will be performed on the data. To use a common analogy, the

data model is equivalent to an architect's building plans.

A data model is independent of hardware or software constraints.

Rather than try to represent the data as a database would see it, the data

model focuses on representing the data as the user sees it in the "real

world". It serves as a bridge between the concepts that make up real-world

events and processes and the physical representation of those concepts in a

database.

Methodology: There are two major methodologies used to create a data

model: the Entity-Relationship (ER) approach and the Object Model. This

document uses the Entity-Relationship approach.

2.2 Data Modeling In the Context of Database Design

Database design is defined as: "design the logical and physical

structure of one or more databases to accommodate the information needs

of the users in an organization for a defined set of applications". The design

process roughly follows five steps:

1. Planning and analysis

2. Conceptual design

3. Logical design

4. Physical design

5. Implementation

Database Management System

B. Santhosh Kumar 31

The data model is one part of the conceptual design process. The

other, typically is the functional model. The data model focuses on what

data should be stored in the database while the functional model deals with

how the data is processed. To put this in the context of the relational

database, the data model is used to design the relational tables.

The functional model is used to design the queries which will access and

perform operations on those tables.

Components of a Data Model: The data model gets its inputs from the

planning and analysis stage. Here the modeler, along with analysts, collects

information about the requirements of the database by reviewing existing

documentation and interviewing end-users.

The data model has two outputs. The first is an entity-relationship

diagram which represents the data structures in a pictorial form. Because

the diagram is easily learned, it is valuable tool to communicate the model

to the end-user. The second component is a data document. This document

that describes in details the data objects, relationships, and rules required by

the database. The dictionary provides the detail required by the database

developer to construct the physical database.

Why is Data Modeling Important?

Data modeling is probably the most labor intensive and time

consuming part of the development process. Why bother especially if you

are pressed for time? A common response by practitioners who write on the

subject is that you should no more build a database without a model than

you should build a house without blueprints.

The goal of the data model is to make sure that the all data objects

required by the database are completely and accurately represented.

Because the data model uses easily understood notations and natural

language, it can be reviewed and verified as correct by the end-users.

Database Management System

B. Santhosh Kumar 32

The data model is also detailed enough to be used by the database

developers to use as a "blueprint" for building the physical database. The

information contained in the data model will be used to define the relational

tables, primary and foreign keys, stored procedures, and triggers. A poorly

designed database will require more time in the long-term.

Without careful planning you may create a database that omits data

required to create critical reports, produces results that are incorrect or

inconsistent, and is unable to accommodate changes in the user's

requirements.

2.3 The Entity-Relationship Model

The Entity-Relationship (ER) model was originally proposed by

Peter in 1976 as a way to unify the network and relational database views.

Simply stated the ER model is a conceptual data model that views the real

world as entities and relationships. A basic component of the model is the

Entity-Relationship diagram which is used to visually represent data

objects. Since Chen wrote his paper the model has been extended and today

it is commonly used for database design For the database designer, the

utility of the ER model is:

It maps well to the relational model. The constructs used in the ER

model can easily be transformed into relational tables.

It is simple and easy to understand with a minimum of training.

Therefore, the model can be used by the database designer to communicate

the design to the end user.

In addition, the model can be used as a design plan by the database

developer to implement a data model in specific database management

software.

Basic Constructs of E-R Modeling

The ER model views the real world as a construct of entities and

association between entities.

Database Management System

B. Santhosh Kumar 33

Entities

Entities are the principal data object about which information is to

be collected. Entities are usually recognizable concepts, either concrete or

abstract, such as person, places, things, or events which have relevance to

the database. Some specific examples of entities are EMPLOYEES,

PROJECTS, and INVOICES. An entity is analogous to a table in the

relational model.

Entities are classified as independent or dependent (in some

methodologies, the terms used are strong and weak, respectively). An

independent entity is one that does not rely on another for identification. A

dependent entity is one that relies on another for identification.

An entity occurrence (also called an instance) is an individual

occurrence of an entity. An occurrence is analogous to a row in the

relational table.

Special Entity Types Associative entities (also known as intersection

entities) are entities used to associate two or more entities in order to

reconcile a many-to-many relationship.

Subtypes entities are used in generalization hierarchies to represent

a subset of instances of their parent entity, called the supertype, but which

have attributes or relationships that apply only to the subset.

Associative entities and generalization hierarchies are discussed in

more detail below.

Relationships

A Relationship represents an association between two or more

entities. An example of a relationship would be:

 Employees are assigned to projects

 Projects have subtasks

 Departments manage one or more projects

Database Management System

B. Santhosh Kumar 34

 Relationships are classified in terms of degree, connectivity,

cardinality, and existence.

These concepts will be discussed below.

Attributes

Attributes describe the entity of which they are associated. A

particular instance of an attribute is a value. For example, "Jane R.

Hathaway" is one value of the attribute Name.

The domain of an attribute is the collection of all possible values an

attribute can have.

The domain of Name is a character string.

Attributes can be classified as identifiers or descriptors. Identifiers,

more commonly called keys, uniquely identify an instance of an entity. A

descriptor describes a non-unique characteristic of an entity instance.

Classifying Relationships

Relationships are classified by their degree, connectivity,

cardinality, direction, type, and existence. Not all modeling methodologies

use all these classifications.

Degree of a Relationship

The degree of a relationship is the number of entities associated

with the relationship.

The n-ary relationship is the general form for degree n. Special

cases are the binary, and ternary, where the degree is 2, and 3, respectively.

A binary relationship, the association between two entities is the

most common type in the real world. A recursive binary relationship occurs

when an entity is related to itself. An example might be "some employees

are married to other employees".

Database Management System

B. Santhosh Kumar 35

A ternary relationship involves three entities and is used when a

binary relationship is inadequate. Many modeling approaches recognize

only binary relationships. Ternary or n-ary relationships are decomposed

into two or more binary relationships.

Connectivity and Cardinality The connectivity of a relationship

describes the mapping of associated entity instances in the relationship. The

values of connectivity are "one" or "many". The cardinality of a

relationship is the actual number of related occurrences for each of the two

entities. The basic types of connectivity for relations are: one-to-one, one-

to-many, and many-to-many.

A one-to-one (1:1) relationship is when at most one instance of a

entity A is associated with one instance of entity B. For example,

"employees in the company are each assigned their own office. For each

employee there exists a unique office and for each office there exists a

unique employee.

A one-to-many (1:N) relationships is when for one instance of

entity A, there are zero, one, or many instances of entity B, but for one

instance of entity B, there is only one instance of entity A. An example of a

1:N relationships is

A department has many employees

Each employee is assigned to one department

A many-to-many (M:N) relationship, sometimes called non-

specific, is when for one instance of entity A, there are zero, one, or many

instances of entity B and for one instance of entity B there are zero, one, or

many instances of entity A. An example is: employees can be assigned to

no more than two projects at the same time; projects must have assigned at

least three employees

A single employee can be assigned to many projects; conversely, a

single project can have assigned to it many employee. Here the cardinality

Database Management System

B. Santhosh Kumar 36

for the relationship between employees and projects is two and the

cardinality between project and employee is three.

Many-to-many relationships cannot be directly translated to

relational tables but instead must be transformed into two or more one-to-

many relationships using associative entities.

Direction

The direction of a relationship indicates the originating entity of a

binary relationship.

The entity from which a relationship originates is the parent entity;

the entity where the relationship terminates is the child entity.

The direction of a relationship is determined by its connectivity. In

a one-to-one relationship the direction is from the independent entity to a

dependent entity. If both entities are independent, the direction is arbitrary.

With one-to-many relationships, the entity occurring once is the parent. The

direction of many-to-many relationships is arbitrary.

Type

An identifying relationship is one in which one of the child entities

is also a dependent entity. A non-identifying relationship is one in which

both entities are independent.

Existence

Existence denotes whether the existence of an entity instance is

dependent upon the existence of another, related, entity instance. The

existence of an entity in a relationship is defined as either mandatory or

optional. If an instance of an entity must always occur for an entity to be

included in a relationship, then it is mandatory. An example of mandatory

existence is the statement "every project must be managed by a single

department". If the instance of the entity is not required, it is optional. An

example of optional existence is the statement, "employees may be

assigned to work on projects".

Database Management System

B. Santhosh Kumar 37

Generalization Hierarchies

A generalization hierarchy is a form of abstraction that specifies

that two or more entities that share common attributes can be generalized

into a higher level entity type called a super type or generic entity. The

lower-level of entities become the subtype, or categories, to the super type.

Subtypes are dependent entities.

Generalization occurs when two or more entities represent

categories of the same real-world object. For example, Wages_Employees

and Classified_Employees represent categories of the same entity,

Employees. In this example, Employees would be the supertype;

Wages_Employees and Classified_Employees would be the subtypes.

Subtypes can be either mutually exclusive (disjoint) or overlapping

(inclusive). A mutually exclusive category is when an entity instance can

be in only one category. The above example is a mutually exclusive

category. An employee can either be wages or classified but not both. An

overlapping category is when an entity instance may be in two or more

subtypes. An example would be a person who works for a university could

also be a student at that same university. The completeness constraint

requires that all instances of the subtype be represented in the supertype.

Generalization hierarchies can be nested. That is, a subtype of one

hierarchy can be a supertype of another. The level of nesting is limited only

by the constraint of simplicity. Subtype entities may be the parent entity in

a relationship but not the child.

E-R Notation

There is no standard for representing data objects in ER diagrams.

Each modeling methodology uses its own notation. All notational styles

represent entities as rectangular boxes and relationships as lines connecting

boxes. Each style uses a special set of symbols to represent the cardinality

of a connection. The notation used in this document is from Martin.

Database Management System

B. Santhosh Kumar 38

The symbols used for the basic ER constructs are:

• Entities are represented by labeled rectangles. The label is the name

of the entity.

• Entity names should be singular nouns.

• Relationships are represented by a solid line connecting two

entities. The name of the relationship is written above the line.

Relationship names should be verbs.

• Attributes, when included, are listed inside the entity rectangle.

Attributes which are identifiers are underlined. Attribute names

should be singular nouns.

• Cardinality of many is represented by a line ending in a crow's

foot. If the crow's foot is omitted, the cardinality is one.

• Existence is represented by placing a circle or a perpendicular bar

on the line.

Mandatory existence is shown by the bar (looks like a 1) next to the

entity for an instance is required. Optional existence is shown by placing a

circle next to the entity that is optional.

Examples of these symbols are shown in Figure 2.1 below:

Figure 2.1 ER Notation

Database Management System

B. Santhosh Kumar 39

2.4 Data Modeling As Part of Database Design

The data model is one part of the conceptual design process. The

other is the function model. The data model focuses on what data should be

stored in the database while the function model deals with how the data is

processed. To put this in the context of the relational database, the data

model is used to design the relational tables. The functional model is used

to design the queries that will access and perform operations on those

tables.

Data modeling is preceded by planning and analysis. The effort

devoted to this stage is proportional to the scope of the database. The

planning and analysis of a database intended to serve the needs of an

enterprise will require more effort than one intended to serve a small

workgroup.

The information needed to build a data model is gathered during

the requirements analysis. Although not formally considered part of the

data modeling stage by some methodologies, in reality the requirements

analysis and the ER diagramming part of the data model are done at the

same time.

Requirements Analysis

The goals of the requirements analysis are:

• To determine the data requirements of the database in terms of

primitive objects

• To classify and describe the information about these objects

• To identify and classify the relationships among the objects

• To determine the types of transactions that will be executed on the

database and the interactions between the data and the transactions

• To identify rules governing the integrity of the data

Database Management System

B. Santhosh Kumar 40

The modeler, or modelers, works with the end users of an

organization to determine the data requirements of the database.

Information needed for the requirements analysis can be gathered in several

ways:

Review of existing documents - such documents include existing

forms and reports, written guidelines, job descriptions, personal narratives,

and memoranda. Paper documentation is a good way to become familiar

with the organization or activity you need to model.

Interviews with end users - these can be a combination of

individual or group meetings. Try to keep group sessions to under five or

six people. If possible, try to have everyone with the same function in one

meeting. Use a blackboard, flip charts, or overhead transparencies to record

information gathered from the interviews.

Review of existing automated systems - if the organization already

has an automated system, review the system design specifications and

documentation

The requirements analysis is usually done at the same time as the

data modeling. As information is collected, data objects are identified and

classified as entities, attributes, or relationship; assigned names; and,

defined using terms familiar to the end-users.

The objects are then modeled and analysed using an ER diagram.

The diagram can be reviewed by the modeler and the end-users to

determine its completeness and accuracy. If the model is not correct, it is

modified, which sometimes requires additional information to be collected.

The review and edit cycle continues until the model is certified as correct.

Three points to keep in mind during the requirements analysis are:

1. Talk to the end users about their data in "real-world" terms. Users

do not think in terms of entities, attributes, and relationships but

about the actual people, things, and activities they deal with daily.

Database Management System

B. Santhosh Kumar 41

2. Take the time to learn the basics about the organization and its

activities that you want to model. Having an understanding about the

processes will make it easier to build the model.

3. End-users typically think about and view data in different ways

according to their function within an organization. Therefore, it is

important to interview the largest number of people that time

permits.

2.5 Steps in Building the Data Model

While ER model lists and defines the constructs required to build a

data model, there is no standard process for doing so. Some methodologies,

such as IDEFIX, specify a bottom-up development process were the model

is built in stages. Typically, the entities and relationships are modeled first,

followed by key attributes, and then the model is finished by adding non-

key attributes. Other experts argue that in practice, using a phased approach

is impractical because it requires too many meetings with the end-users.

The sequences used for this document are:

1. Identification of data objects and relationships

2. Drafting the initial ER diagram with entities and relationships

3. Refining the ER diagram

4. Add key attributes to the diagram

5. Adding non-key attributes

6. Diagramming Generalization Hierarchies

7. Validating the model through normalization

8. Adding business and integrity rules to the Model

In practice, model building is not a strict linear process. As noted

above, the requirements analysis and the draft of the initial ER diagram

often occur simultaneously. Refining and validating the diagram may

Database Management System

B. Santhosh Kumar 42

uncover problems or missing information which require more information

gathering and analysis.

Identifying Data Objects and Relationships

In order to begin constructing the basic model, the modeler must

analyze the information gathered during the requirements analysis for the

purpose of:

• Classifying data objects as either entities or attributes

• Identifying and defining relationships between entities

• Naming and defining identified entities, attributes, and relationships

• Documenting this information in the data document

To accomplish these goals the modeler must analyze narratives from users,

notes from meeting, policy and procedure documents, and, if lucky, design

documents from the current information system.

Although it is easy to define the basic constructs of the ER model,

it is not an easy task to distinguish their roles in building the data model.

What makes an object an entity or attribute? For example, given the

statement "employees work on projects". Should employees be classified as

an entity or attribute? Very often, the correct answer depends upon the

requirements of the database. In some cases, employee would be an entity,

in some it would be an attribute.

While the definitions of the constructs in the ER Model are simple, the

model does not address the fundamental issue of how to identify them.

Some commonly given guidelines are:

• Entities contain descriptive information

• Attributes either identify or describe entities

• Relationships are associations between entities

Database Management System

B. Santhosh Kumar 43

These guidelines are discussed in more detail below.

• Entities

• Attributes

 Validating Attributes

 Derived Attributes and Code Values

• Relationships

• Naming Data Objects

• Object Definition

• Recording Information in Design Document

Entities

There are various definitions of an entity:

"Any distinguishable person, place, thing, event, or concept, about

which information is kept"

"A thing which can be distinctly identified"

"Any distinguishable object that is to be represented in a database"

"...anything about which we store information (e.g. supplier,

machine tool, employee, utility pole, airline seat, etc.). For each

entity type, certain attributes are stored".

These definitions contain common themes about entities:

 An entity is a "thing", "concept" or, object". However, entities can

sometimes represent the relationships between two or more objects.

This type of entity is known as an associative entity.

 Entities are objects which contain descriptive information. If an

data object you have identified is described by other objects, then it

is an entity. If there is no descriptive information associated with

Database Management System

B. Santhosh Kumar 44

the item, it is not an entity. Whether or not a data object is an entity

may depend upon the organization or activity being modeled.

 An entity represents many things which share properties. They are

not single things. For example, King Lear and Hamlet are both

plays which share common attributes such as name, author, and

cast of characters. The entity describing these things would be

PLAY, with King Lear and Hamlet being instances of the entity.

 Entities which share common properties are candidates for being

converted to generalization hierarchies (See below)

 Entities should not be used to distinguish between time periods. For

example, the entities 1st Quarter Profits, 2nd Quarter Profits, etc.

should be collapsed into a single entity called Profits. An attribute

specifying the time period would be used to categorize by time

 Not everything the users want to collect information about will be

an entity. A complex concept may require more than one entity to

represent it. Others "things" users think important may not be

entities.

Attributes

Attributes are data objects that either identify or describe entities.

Attributes that identify entities are called key attributes. Attributes that

describe an entity are called non-key attributes. Key attributes will be

discussed in detail in a latter section.

The process for identifying attributes is similar except now you

want to look for and extract those names that appear to be descriptive noun

phrases. Validating Attributes Attribute values should be atomic, that is,

present a single fact. Having disaggregated data allows simpler

programming, greater reusability of data, and easier implementation of

changes. Normalization also depends upon the "single fact" rule being

followed.

Database Management System

B. Santhosh Kumar 45

Common types of violations include:

 Simple aggregation - a common example is Person Name which

concatenates first name, middle initial, and last name. Another is

Address which concatenates, street address, city, and zip code.

When dealing with such attributes, you need to find out if there are

good reasons for decomposing them. For example, do the end-

users want to use the person's first name in a form letter? Do they

want to sort by zip code?

 Complex codes - these are attributes whose values are codes

composed of concatenated pieces of information. An example is

the code attached to automobiles and trucks. The code represents

over 10 different pieces of information about the vehicle. Unless

part of an industry standard, these codes have no meaning to the

end user. They are very difficult to process and update.

 Text blocks - these are free-form text fields. While they have a

legitimate use, an over reliance on them may indicate that some

data requirements are not met by the model.

 Mixed domains - this is where a value of an attribute can have

different meaning under different conditions

Derived Attributes and Code Values

Two areas where data modeling experts disagree is whether derived

attributes and attributes whose values are codes should be permitted in the

data model.

Derived attributes are those created by a formula or by a summary

operation on other attributes. Arguments against including derived data are

based on the premise that derived data should not be stored in a database

and therefore should not be included in the data model. The arguments in

favour are:

Database Management System

B. Santhosh Kumar 46

 Derived data is often important to both managers and users and

therefore should be included in the data model

 It is just as important, perhaps more so, to document derived

attributes just as you would other attributes

 Including derived attributes in the data model does not imply how

they will be implemented

A coded value uses one or more letters or numbers to represent a fact.

For example, the value Gender might use the letters "M" and "F" as values

rather than "Male" and "Female". Those who are against this practice cite

that codes have no intuitive meaning to the end-users and add complexity

to processing data. Those in favour argue that many organizations have a

long history of using coded attributes, that codes save space, and improve

flexibility in that values can be easily added or modified by means of look-

up tables.

Relationships

Relationships are associations between entities. Typically, a

relationship is indicated by a verb connecting two or more entities. For

example: employees are assigned to projects.

As relationships are identified they should be classified in terms of

cardinality, optionality, direction, and dependence. As a result of defining

the relationships, some relationships may be dropped and new relationships

added. Cardinality quantifies the relationships between entities by

measuring how many instances of one entity are related to a single instance

of another.

To determine the cardinality, assume the existence of an instance of

one of the entities. Then determine how many specific instances of the

second entity could be related to the first. Repeat this analysis reversing the

entities. For example:

Database Management System

B. Santhosh Kumar 47

Employees may be assigned to no more than three projects at a

time; every project has at least two employees assigned to it.

Here the cardinality of the relationship from employees to projects

is three; from projects to employees, the cardinality is two. Therefore, this

relationship can be classified as a many-to-many relationship.

If a relationship can have a cardinality of zero, it is an optional

relationship. If it must have a cardinality of at least one, the relationship is

mandatory. Optional relationships are typically indicated by the conditional

tense. For example:

An employee may be assigned to a project

Mandatory relationships, on the other hand, are indicated by words

such as must have. For example:

A student must register for at least three course each semester

In the case of the specific relationship form (1:1 and 1:M), there is

always a parent entity and a child entity. In one-to-many relationships, the

parent is always the entity with the cardinality of one. In one-to-one

relationships, the choice of the parent entity must be made in the context of

the business being modeled. If a decision cannot be made, the choice is

arbitrary.

Naming Data Objects

The names should have the following properties:

 Unique

 Have meaning to the end-user

Contain the minimum number of words needed to uniquely and

accurately describe the object For entities and attributes, names are singular

nouns while relationship names are typically verbs.

Database Management System

B. Santhosh Kumar 48

Some authors advise against using abbreviations or acronyms

because they might lead to confusion about what they mean. Other believe

using abbreviations or acronyms are acceptable provided that they are

universally used and understood within the organization.

You should also take care to identify and resolve synonyms for

entities and attributes.

This can happen in large projects where different departments use

different terms for the same thing.

Object Definition

Complete and accurate definitions are important to make sure that

all parties involved in the modeling of the data know exactly what concepts

the objects are representing.

Definitions should use terms familiar to the user and should

precisely explain what the object represents and the role it plays in the

enterprise. Some authors recommend having the end-users provide the

definitions. If acronyms, or terms not universally understood are used in the

definition, then these should be defined.

While defining objects, the modeler should be careful to resolve

any instances where a single entity is actually representing two different

concepts (homonyms) or where two different entities are actually

representing the same "thing" (synonyms). This situation typically arises

because individuals or organizations may think about an event or process in

terms of their own function.

An example of a homonym would be a case where the Marketing

Department defines the entity MARKET in terms of geographical regions

while the Sales Departments thinks of this entity in terms of demographics.

Unless resolved, the result would be an entity with two different meanings

and properties.

Database Management System

B. Santhosh Kumar 49

Conversely, an example of a synonym would be the Service

Department may have identified an entity called CUSTOMER while the

Help Desk has identified the entity CONTACT. In reality, they may mean

the same thing, a person who contacts or calls the organization for

assistance with a problem. The resolution of synonyms is important in

order to avoid redundancy and to avoid possible consistency or integrity

problems.

Recording Information in Design Document

The design document records detailed information about each

object used in the model. As you name, define, and describe objects, this

information should be placed in this document. If you are not using an

automated design tool, the document can be done on paper or with a word

processor. There is no standard for the organization of this document but

the document should include information about names, definitions, and, for

attributes, domains. Two documents used in the IDEF1X method of

modeling are useful for keeping track of objects. These are the ENTITY-

ENTITY matrix and the ENTITY-ATTRIBUTE matrix.

The ENTITY-ENTITY matrix is a two-dimensional array for

indicating relationships between entities. The names of all identified

entities are listed along both axes. As relationships are first identified, an

"X" is placed in the intersecting points where any of the two axes meet to

indicate a possible relationship between the entities involved. As the

relationship is further classified, the "X" is replaced with the notation

indicating cardinality.

The ENTITY-ATTRIBUTE matrix is used to indicate the

assignment of attributes to entities. It is similar in form to the ENTITY-

ENTITY matrix except attribute names are listed on the rows.

Figure 2.2 shows examples of an ENTITY-ENTITY matrix and an

ENTITYATTRIBUTE matrix.

Database Management System

B. Santhosh Kumar 50

Figure 2.2

2.6 Developing the Basic Schema

Once entities and relationships have been identified and defined,

the first draft of the entity relationship diagram can be created. This section

introduces the ER diagram by demonstrating how to diagram binary

relationships. Recursive relationships are also shown.

Binary Relationships

Figure 2.3 shows examples of how to diagram one-to-one, one-to-

many, and many-to-many relationships.

Database Management System

B. Santhosh Kumar 51

Figure 2.3 Example of Binary relationships

One-To-One

Figure 2A shows an example a one-to-one diagram. Reading the

diagram from left to right represents the relationship every employee is

assigned a workstation. Because every employee must have a workstation,

the symbol for mandatory existence—in this case the crossbar—is placed

next to the WORKSTATION entity. Reading from right to left, the diagram

shows that not all workstation are assigned to employees. This condition

may reflect that some workstations are kept for spares or for loans.

Therefore, we use the symbol for optional existence, the circle, next to

EMPLOYEE. The cardinality and existence of a relationship must be

derived from the "business rules" of the organization.

For example, if all workstations owned by an organization were

assigned to employees, then the circle would be replaced by a crossbar to

indicate mandatory existence. One-to-one relationships are rarely seen in

"real-world" data models. Some practioners advise that most one-to-one

relationships should be collapsed into a single entity or converted to a

generalization hierarchy.

Database Management System

B. Santhosh Kumar 52

One-To-Many

Figure 2B shows an example of a one-to-many relationship

between DEPARTMENT and PROJECT. In this diagram, DEPARTMENT

is considered the parent entity while PROJECT is the child. Reading from

left to right, the diagram represents departments may be responsible for

many projects.

The optionality of the relationship reflects the "business rule" that

not all departments in the organization will be responsible for managing

projects. Reading from right to left, the diagram tells us that every project

must be the responsibility of exactly one department.

Many-To-Many

Figure 2C shows a many-to-many relationship between

EMPLOYEE and PROJECT. An employee may be assigned to many

projects; each project must have many employee Note that the association

between EMPLOYEE and PROJECT is optional because, at a given time,

an employee may not be assigned to a project.

However, the relationship between PROJECT and EMPLOYEE is

mandatory because a project must have at least two employees assigned.

Many-To-Many relationships can be used in the initial drafting of the

model but eventually must be transformed into two one-to-many

relationships. The transformation is required because many-to-many

relationships cannot be represented by the relational model. The process for

resolving many-to-many relationships is discussed in the next section.

Recursive relationships

A recursive relationship is an entity is associated with itself. Figure

2.4 shows an example of the recursive relationship.

An employee may manage many employees and each employee is

managed by one employee.

Database Management System

B. Santhosh Kumar 53

Figure 2.4 Example of Recursive relationships

Summary

 A data model is a plan for building a database. To be effective, it

must be simple enough to communicate to the end user the data

structure required by the database yet detailed enough for the

database design to use to create the physical structure.

 The Entity-Relation Model (ER) is the most common method used

to build data models for relational databases.

 The Entity-Relationship Model is a conceptual data model that

views the real world as consisting of entities and relationships. The

model visually represents these concepts by the Entity-Relationship

diagram.

 The basic constructs of the ER model are entities, relationships,

and attributes.

 Data modeling must be preceded by planning and analysis.

 Planning defines the goals of the database, explains why the goals

are important, and sets out the path by which the goals will be

reached.

Database Management System

B. Santhosh Kumar 54

 Analysis involves determining the requirements of the database.

This is typically done by examining existing documentation and

interviewing users.

 Data modeling is a bottom up process. A basic model, representing

entities and relationships, is developed first. Then detail is added to

the model by including information about attributes and business

rules. The first step in creating the data model is to analyze the

information gathered during the requirements analysis with the

goal of identifying and classifying data objects and relationships

 The Entity-Relationship diagram provides a pictorial representation

of the major data objects, the entities, and the relationships between

them.

Key Words

ER Model, Database Design, Data Model, Schema, Entities,

Relationship, Attributes, Cardinality

Self-Assessment Questions

1. A university registrar’s office maintains data about the following entities:

o Courses, including number, title, credits, syllabus, and

prerequisites;

o Course offerings, including course number, year, semester, section

number, instructor(s), timings, and classroom;

o Students, including student-id, name, and program;

o Instructors, including identification number, name, department, and

title.

Database Management System

B. Santhosh Kumar 55

Further, the enrollment of students in courses and grades awarded to

students in each course they are enrolled for must be appropriately

modeled. Construct a E-R diagram for registrar’s office. Document all

assumptions that you make about the mapping constraints

2. Design an E-R diagram for keeping track of the exploits of your favorite

sports team. You should store the matches played, the scores in each match,

the players in each match, and individual player statistics for each match.

Summary statistics should be modeled as derived attributes.

3. Explain the significance of ER Model for Database design?

4. Enumerate the basic constructs of ER Model

Database Management System

B. Santhosh Kumar 56

Chapter 3:

STRUCTURED QUERY LANGUAGE

SQL-uses a combination of relational algebra and relational

calculus constructs.

The SQL language has several parts:

Data Definition Language (DDL): The SQL DDL provides commands for

defining relation schemas, deleting relations and modifying relation

schemas.

Data manipulation Languages (DML): The SQL DML includes a query

language based on both relational algebra and the tuple relation calculus. It

includes commands to insert tuples into, delete tuples from and modify

tuples in the database.

View Definition: The SQL DDL includes commands for defining views.

Transaction Control: SQL includes commands for specifying the

beginning and ending of transactions.

Embedded SQL and Dynamic SQL: Embedded and dynamic SQL

defines how SQL statements can be embedded within general-purpose

programming languages such as C, C++, Java, PL/I, COBOL, Pascal and

FORTRAN.

Integrity: The SQL DDL includes commands for specifying integrity

constraints that the data stored in the database must satisfy. Updates that

violate integrity constraints are allowed.

Authentication: The SQL DDL includes commands for specifying access

rights to relations and views.

3.1 Basic Structure

The basic structure of an SQL expression consists of three clauses:

select, from and where.

Database Management System

B. Santhosh Kumar 57

The select clause corresponds to the projection operation of the relational

algebra. It is used to list the attributes desired in the result of a query.

The from clause corresponds to the Cartesian product operation of the

relational algebra. It lists the relations to be scanned in the evaluation of the

expression.

The where clause correspond to the selection predicate of the relational

algebra. It consists of a predicate involving attributes of the relations that

appear in the clause.

A SQL has the form

Select A1, A2,….An from r1,r2,….rm where p

Where Ai – an attribute, ri - relation and p-predicate.

Eg: Select * from employee;

Select emp_no, emp_name from employee where emp_city=’ooty’;

3.2 Data Definition Language

It is used to create a table, alter the structure of a table and also drop the

table created.

Create command:

Syntax: create table <table name> (<columnname1> datatype(size),

<columnname2> datatype(size),………);

Eg: create table employee (ename varchar2(10), eid number(5),

address varchar2(10), salary number(5), designation varchar2(10));

To view the table structure:

Syntax: desc <table name>

Eg: desc employee

Alter Command: It is used to add a new column or modify existing

column definitions.

Database Management System

B. Santhosh Kumar 58

Syntax: alter table <table name> add (<new column name1>

datatype(size), <new column name2> datatype(size)……….);

 alter table <table name> modify (column definition);

Eg: alter table employee add (age number(2));

 alter table employee modify (eid number(8));

Truncate command: This is used to delete that records but retain the

structure.

Syntax: truncate table <table name>

Eg: truncate table employee;

Drop Command: This is used to delete a table.

Syntax: drop table <table name>

Eg: drop table employee;

3.3 DML Commands

Insert command:

Syntax: insert into <table name> values (a list of data values)

// create table employee (ename varchar2(10), eid number(5), salary

number(5));

Eg: insert into employee values (‘ABC’, 50, 1000)

Update Command: Changes be made by using update command.

Syntax: update <table name> set <field=value,…> where <condition>;

Eg: update employee set eid=100 where ename=’ABC’;

Delete Command: Rows can be deleted using delete command.

Syntax: delete from <table name> where <condition>

Eg: delete from employee where eid=100;

Database Management System

B. Santhosh Kumar 59

THE RENAME OPERATION:

SQL provides a mechanism for renaming both relations and

attributes. It uses the as clause, taking the from

 <Old name> as <new name>.

The “as” clause can appear in both the select and from clause.

Eg: select ename as employee_name from employee;

 alter table employee rename to emp;

STRING OPERATIONS:

The most commonly used operation on strings is pattern matching

using the operator like.

 Percent (%) The % character matches any substring.

 Underscore (_): The _ Character matches any character.

Eg: Retrieve the names of the employees whose name is

starting with the character ‘a’

Select ename from employee where name like ‘a%’;

Select ename from employee where name like ‘a_ _ _’;

ORDER BY CLAUSE:

The order by clause causes the tuples in the result of a query to

appear in sorted order.

Eg: select * from employee order by salary;

 select * from employee order by salary desc, eid asc;

ARITHMETIC OPERATORE:

Standard arithmetic operations used are +, -, *, /

Eg: select ename, eid, salary*10 from employee;

Database Management System

B. Santhosh Kumar 60

SET OPERATIONS:

The SQL operations union, intersect and except operate on

relations and correspond to the relational algebra operations

UNION OPERATION:

It returns all distinct rows selected by both queries (It eliminates

duplicate rows)

Eg: select dno from employee union select dno from department;

INTERSECT OPERATION:

It returns only rows that are common to both the queries.

Eg: select dno from employee intersect select dno from department;

EXCEPT OPERATION:

It returns all distinct rows selected only by the first query and not

by the second.

Eg: select dno from employee except select dno from department;

AGGREGATE FUNCTIONS:

Aggregate functions are functions that take a collection of values as

input and return a single value. SQL offers five built in aggregate function.

1. Average: avg

2. Minimum: min

3. Maximum: max

4. Total: sum

5. Count: count

Eg: select ename, avg(salary), max(salary), min(salary) from

employee;

Database Management System

B. Santhosh Kumar 61

NULL values:

SQL allows the use of null values to indicate absence of information about

the value of an attribute.

Eg: select ename from employee where salary is null;

NESTED SUBQUERIES:

 A sub query is a select from where expression that is needed within

another query.

Eg: select ename, designation from employee where

designation=(select designation from employee where ename=’aaaa’);

Sub queries that return a set of values:

If a sub query can return more than one value you must specify

how the returned values should be used in the where values.

Insert ANY or ALL between the comparison operators (=,!=,<,>,..) and the

sub query.

Eg: select dno, salary, designation from employee where salary ANY

(select salary from employee where dno=10) order by salary desc;

 select dno, salary, designation from employee where salary ALL

(select salary from employee where dno=10) order by salary desc;

Sub queries that return a list of values

IN and NOTIN will be used.

IN = ANY; NOTIN !=ALL

Eg: select ename, salary, designation from employee where dno=10

and job in (select designation from employee where dno=30);

select ename, salary, designation from employee where dno=10

and job notin (select designation from employee where dno=30);

Database Management System

B. Santhosh Kumar 62

Sub queries that return more than one column

Eg: select ename, designation from employee where (designation,

salary)= (select designation, salary from employee where ename=’aaa’);

Multiple sub queries

Eg: select * from employee where designation in (select designation

from employee where ename=’aaa’) or salary (select salary from

employee where ename=’bbb’) order by designation, salary;

Sub queries with multiple tables

Eg: select * from employee where job=(select job from employee where

dno=(delete dno from department where location=’Chennai’));

3.4 Different Types of Joins

 Simple join

 Self join

 Outer join

Simple join: It retrieves rows from two tables having a common column

types.

a) Equi join

b) Non equi join

Equi Join: It combines rows that have equivalent values for the specified

columns.

Eg: select * from employee, department where employee.dno =

department.dno;

Non equi join: It specifies the relationship between columns belonging to

different tables by making use of relational operators (>,<.>=,≤,<>)

Database Management System

B. Santhosh Kumar 63

JOIN

Join is a query in which data is retrieved from two or more table. A

join matches data from two or more tables, based on the values of one or

more columns in each table.

Need for joins

In a database, where the tables are normalized one table may not

give you all the information about a particular entity. For example, the

employee table gives only the department ID, so if we want to know the

department name and the manage name for each employee, and then you

will have to get the information from the Employee and Department table.

In other words, we will have to join the two tables.

So for comprehensive data analysis, we must assemble data from

several tables. The relational model having made to partition the data and

put in the different tables for reducing data redundancy and improving data

independence relies on the join operation to enable to perform ad hoc

queries that will combine the related data which resides in more than one

table

Different types on joins are:

 Inner Join

 Outer Join

 Natural Join

Inner Join

It returns the matching rows from the tables that are being joined.

Consider following two relations:

i) employee(emp_name, city)

ii) Employee_salary(emp_name, dept, salary)

These two relations are shown in below figures:

Database Management System

B. Santhosh Kumar 64

Employee

 Emp_name City

Hari Pune

Raju Mumbai

Sekar Chennai

Jay Delhi

Employee_salary

Emp_name Department Salary

Hari Computer 100000

Raju Mechnical 80000

Ashok Civil 65000

Jay IT 90000

Eg: select employee.emp_name, employee_salary.salary from

employee inner join employee_salary on employee.emp_name=

employee_salary.emp_name;

 Emp_name Salary

Hari 100000

Raju 80000

Jay 90000

Database Management System

B. Santhosh Kumar 65

Eg: select * from employee inner join employee_salary on

employee.emp_name= employee_salary.emp_name;

 Emp_name City Emp_name Department Salary

Hari Pune Hari Computer 100000

Raju Mumbai Raju Mechnical 80000

Jay Delhi Jay IT 90000

Outer Join:

When tables are joined using inner join, rows which contain

matching in the join predicated are returned. Sometimes we need both

matching and non-matching rows returned for the tables that are being

joined. This kind of an operation is known as an outer join.

An outer is an extended form of the inner join. In this, the rows in

one table having no matching rows in the outer table will also appear in the

result table with nulls.

Types of outer join

The outer join can be any one of the following:

 Left outer join

 Right outer join

 Full outer join

Left outer join:

 The left outer join returns matching rows from the tables being

joined, and also non-matching rows from the left table in the result and

places null values in the attributes that come from the right table.

Eg: select employee.emp_name, employee_salary.salary from employee

left outer join employee_salary on employee.emp_name=

employee_salary.emp_name;

Database Management System

B. Santhosh Kumar 66

Emp_name Salary

Hari 100000

Raju 80000

Jay 90000

Sekar null

Right outer join:

 The right outer join returns matching rows from the tables being

joined, and also non-matching rows from the right table in the result and

places null values in the attributes that come from the left table.

Eg: select employee.emp_name, employee_salary.salary,

employee_salary.city from employee right outer join employee_salary on

employee.emp_name= employee_salary.emp_name;

Emp_name City Salary

Hari Pune 100000

Raju Mumbai 80000

Jay Delhi 90000

Ashok null 65000

3.5 Integrity Constraints

 It is a mechanism used to prevent invalid data entry into the table.

Types

 Domain integrity constraints

 Entity integrity constraints

 Referential integrity constraints

Domain integrity constraints

Types

a) Not null constraint

b) Check constraint

Database Management System

B. Santhosh Kumar 67

Not null constraint: It is used to enforce that the particular column will

not accept null values.

Eg: create table employee (eid number(5) not null, ename varchar2(2));

Check constraint: It is used to specify the conditions that each row must

satisfy.

Eg: create table employee (ename varchar2(10), eid number(5), salary

number(5) constraint sal check (salary 500));

sal- constraint name.

Entity integrity constraints

Types

a) Unique Constraint

b) Primary Key Constraint

Unique Constraint: It allows null values for the column and it is used to

prevent duplication of values.

Eg: create table employee (ename varchar2(10), eid number(5) unique)

Primary Key Constraint: It will not allow null values for the column and

it is used to prevent duplication of values.

Eg: create table employee (ename varchar2(10), eid number(5) primary

key, address varchar2(10));

Referential integrity constraints

To establish a parent child relationship between two tables having a

common column, we can use referential integrity constraints.

To implement this, we should define the column in the parent table

as primary key and that same column in the child table as a forging key

referring to the corresponding parent entry.

Database Management System

B. Santhosh Kumar 68

Eg: create table employee (ename varchar2(10), eid number(5)

primary key, dno number(5) constraint fdno references department(dno),

salary number(5));

 fdno- Constraint name

Before enabling these constraints, we ensure that dno column of the

respective tables have been defined with either unique key or primary key

constraint.

3.6 Stored Procedure

PL/SQL supports two types of sub programs. They are

 Procedures

 Function

Procedures are usually used to perform any specific task and functions

are used to compute a value.

PROCEDURES

A Procedure is a sub program that performs a specific action. They

syntax for creating a procedure is given below:

Syntax: Create or replace procedure <proc_name> [parameter_list] is

 <local declaration>

 Begin

 (executable statements)

 [esception] (exception handlers)

 End;

A procedure has two parts:

 Specification

 Body

Database Management System

B. Santhosh Kumar 69

The procedure specification begins with the keyword procedure

and ends with the procedure name or parameter list. The procedure body

begins with the keyword is and ends with the keyword end.

Syntax to execute a procedure is given below:

SQL> exec <proc_name> (parameters);

Eg: create or replace procedure interest (ir1 real,ir2 real)

is old_bal number(9);

c_id account.acc_no % type;

cursor a is select balance,acc_no from account;

begin

open a;

loop

fetch a into old_bal,c_id;

exit when a % notfound;

if old_bal<5000

then

DBMS_OUTPUT.PUT_LINE('Balance less than min'||c_id);

elsif old_bal between 5000 and 10000

then

update account set balance=old_bal+(old_bal*ir1) where

acc_no=c_id;

else

update account set balance=old_bal+(old_bal*ir2) where

acc_no=c_id;

end if;

end loop;

close a;

end;

Database Management System

B. Santhosh Kumar 70

Types of parameters pass to subprogram

There are three types of parameters: in, out and inout.

i) In parameter: The in parameter mode is used to pass values to

the subprogram when invoked.

ii) Out parameter: The out parameter mode is ised to retuen values

to the caller of a subprogram.

iii) Inout parameter: The inout parameter is used to pass initial

values to subprogram, when invoked and it also returns

updated values to the caller.

Eg: create or replace largest_value (a in number, b inout number, c out

number) is

begin

c=100;

if a>b and a>c then

b:=a;

c:=a;

else if b>a and b>c then

c:=b;

else

b:=c;

end if;

dbms_output.put_line(‘largest value=’||b);

end;

FUNCTIONS:

A function is a subprogram that computes a value.

The syntax for creating a function is given below:

create or replace function <function_name>[argument list] return

datatype is (local declaration)

Database Management System

B. Santhosh Kumar 71

begin

(executable statements)

[exception]

(exception handler)

end;

Eg: create or replace largest_number (a in number, b in number, c in

number) return number is

begin

if a>b and a>c then

return a;

else if b>a and b>c then

return b;

else

return c;

end if;

end;

3.7 Triggers

A trigger is a statement that the system executes automatically as a

side effect of a modification to the database. To design a trigger

mechanism, we must need two requirements:

1) Specify when a trigger is to be executed. This broken up into an

event that causes the trigger to be checked and as condition that

must be satisfied for trigger execution to proceed.

2) Specify the actions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-

action model for trigger.

The database stores triggers just as if they were regular data, so that

they are persistent and are accessible to all database operations. Once we

enter into trigger into the database, the DB system takes on the

Database Management System

B. Santhosh Kumar 72

responsibility of executing it whenever the specified event occurs and the

corresponding condition is satisfied.

Need for triggers:

 Triggers are useful mechanism for altering humans for starting

certain tasks automatically, when certain conditions are met. For example,

suppose that, instead of allowing negative account balances, the bank deals

with overdrafts by setting the account balance to zero, and creating a loan

in the amount of the overdraft. The bank gives this loan a loan_no identical

to the account number of the overdrawn account.

For this example, the condition for executing the trigger is an

update to the account relation that results in a negative balance value.

Suppose that Jones withdrawal of some money from an account

made the account balance negative. Let ‘t’ denote account tuple with a

negative balance value. The actions to be taken are:

 Insert a new tuple ‘s’ in the loan relation with

S[loan_no]=t[acc_no]

S[branch_name]=t[branch_name]

S[amount]=t[balance]

 Insert a new tuple ‘u’ in the borrower relation with

U[cus_name]=”jones”

U[loan_no]=t[acc_no]

 Set ‘t’[balance] to 0.

As another example of the use of the triggers, suppose a warehouse

wishes to maintain a minimum inventory of each them; when the inventory

level of an item falls below the minimum level, an order should be placed

automatically. This is how the business rule can be implemented by

triggers: on an update of the inventory level of an item, the trigger should

Database Management System

B. Santhosh Kumar 73

compare the level with the minimum inventory for the item, and if the level

is at or below the minimum, a new order is added to an orders relation.

Triggers in SQL

SQL based database systems use triggers widely. Eg of SQL trigger is

givenbelow:

create trigger overdraft_trigger after update on account new row as

nrow

for each row

when nrow.balance<0

begin atomic

insert into borrower (select cus_name, acc_no) from depositor

where nrow.acc_no=depositor.acc_no);

insert into loan values(nrow.acc_no, nrow.branch_name,

nrow.balance);

update account set balance=0 where acc.acc_no=nrow.acc_no;

end

This trigger definition specifies that the trigger is initiated after any

update of the relation current is executed. The referencing new row as

clause creates a variable nrow, which stores the value of an updated row

that the update. Then, for each row, when statement checks the value of

balance whether it is less than zero or not.

If it is, then cus_name and acc_no of depositor for given acc_no

inserted into borrower relation. A new tuple with values nroe.acc_no,

nrow.branch_name and nrow.balance is inserted into loan relation and

finally balance of that acc_no is set to zero in account relation.

Database Management System

B. Santhosh Kumar 74

3.8 Security

Security is a protection from malicious attempts to steal or modify

data. The security should be provided at following levels:

1) Database system level:

Use authentication and authorization mechanisms to allow

specific users access only to required data

2) Operating system level:

Operating system super-users can do anything they want to the

database. Good OS level security is required.

3) Network Level:

Use encryption to prevent.

 Eavesdropping (unauthorized reading of messages).

 Masquerading (Pretending to be an authorized user or sending

message supposedly from authorized users)

4) Physical Level:

 Here physical access to computers allows destruction of data by

intruders; traditional lock-and-key security is needed.

 Computers must also be protected from floods, fire etc.,

5) Human level:

 Users must be screened to ensure that authorized users do not

give access to intruders.

 Users should be trained on password selection and secrecy.

3.9 Advanced SQL Features

Some advanced SQL features are given below:

 Create a table with the same schema as an existing table:

Create table temp_account like account;

 SQL: 2003 allows subqueries to occur anywhere a value is required

provided the subquery returns only one value. This applies to

updates as well.

Database Management System

B. Santhosh Kumar 75

 SQL: 2003 allows subqueries in the from clause to access attributes

of other relations in the from clause using the lateral construct:

Select c.customer_name, num_accounts from customer C,

lateral (select count(*) from account a where

a.customer_name=c.customer_name) as this_customer

(num_accounts);

 Merge construct allows batch processing of updates.

Merge into account as a using (select * from

funds_received ad f) on

(a.account_number=f.account_number) when matched then

update set balance=balance+f.amount;

3.10 Embedded SQL

Embedded SQLs are SQL statements included in the programming

language. The programming language in which the SQL statements are

included is called the host language. Some of the host languages are C,

COBOL, Pascal, FORTRAN, PL/I etc., This embedded SQL source code is

submitted to an SQL precompiler, which processes the SQL statements.

Variables of the host language can be the program to be used by the SQL

statements. The host language variables are used by the embedded SQL

statements to receive of the SQL queries thus allowing the programming

language to process the retrieved values.

Embedded SQL Features

Some of the basic features of the embedded SQL are given below:

 The embedded SQL statements appear in the host language. It

usually does not matter whether the SQL statements are written

in uppercase of lowercase. Usually the style of the host language

is followed.

Database Management System

B. Santhosh Kumar 76

 Embedded SQL statements are prefixed by a delimiter- EXEC

SQL- so that they can be distinguished from the host language

statements.

 If an embedded SQL statement extends over multiple lines, the

host language strategy for statement continuation is used.

 Every embedded SQL statement is terminated with a delimiter.

In COBOL, it is END EXEC. In Adc, C, Pascal and PL/I, it is a

semicolon.

 Host variables and SQL columns can have the same name.

 SQL statements can include reference to host variables. Such

reference must be prefixed with a colon (:) to distinguish them

from names of SQL objects like column names.

Advantages of Embedded SQL programs:

 The mixing of SQL statements with the programming language

statements is an efficient way of merging the strengths of two

programming environments. The programming language

provides the flow of control, host variables, block structure,

conditional branching, looping facilities and input/output

functions etc. The SQL handles the database access and

manipulation.

 The use of the precompiler shifts the CPU intensive passing and

optimization to the development phase. So the resulting

executable program will be very efficient in the CPU usage.

 The program’s run time interface to the private database

routines is transparent to the application programmer.

Dynamic SQL

 The dynamic SQL component of SQL allows programs to construct

and submit SQL queries at run time. Using dynamic SQL, programs can

Database Management System

B. Santhosh Kumar 77

create SQL queries as strings at run time and can either have them executed

immediately or have them prepared for subsequent use.

 SQL defines standards for embedding dynamic SQL calls in a host

language, such as C as in the following examples:

Char * sqlprog=”update account set balance = balance*1.05 where

acc_no=?”

EXEC SQL prepare dynprog from:sqlprog;

Char acc[10]=”101”;

EXEC SQL execute dynprog using :acc;

 The dynamic SQL program contains acc_no=?, which is a place

holder for a value that a provided when the SQL program is executed.

Missing Information

 There are times when we want to add a tuple to a relation but don’t

have values for all attribute. Such values can be of type:

o Non-existent value: We know that the attribute in

inapplicable for that particular tuple

o Unknown value: There is a value but we don’t know it.

o No- information: We don’t know whether there is a value

or not.

 DBMS’s generally lump all these together.

 So what do we put in the tuple when information is missing?

 One possibility is to use a special value. Eg, if age is unknown, use

o, If SSN is unknown use 999999999999.

 This is not a proper solution to missing information.

 The proper solution to this problem is, use a value that is not in the

domain. We call this a null value. This is not the same as a null/nil

pointer,

Database Management System

B. Santhosh Kumar 78

 Primary keys mustn’t have null values. Eg suppose regnum is the

primary key of the relation and it consider that it can have null

value.

RegNum Surname Firstname DOB Program

NULL Smith John NULL CSE

1234 John Cena 12/02/82 CE

9645 Black Burry NULL NULL

 As the primary key RegNum is having null value for some tuples,

we can not uniquely identify tuple using primary key. Hence,

primary key should not have null values.

3.11 View

‘ A view is an imaginary table and it contains no data as such. Table

contains data associated only with the table whereas views can contain data

from multiple tables.

Creating a view:

To create views we are using create view statement.

Eg: create view v1 as select eno, ename, dname from employee,

department where employee.dno=department.dno;

Altering a view:

To alter a view that is to remove a column from a view, the replace

command is used.

Eg: create or replace v1 as select eno, ename, dname from

employee, department where employee.dno=department.dno;

Destroying a view:

View can be dropped by using the DROP VIEW command.

Syntax: drop view <view name>

Eg: drop view v1

Database Management System

B. Santhosh Kumar 79

Advantage:

 They provide table security by restricting access to a predetermined

set of rows or columns of a table.

 They simplify commands for the user because they allow them to

select information from multiple tables.

 They provide data in a different prospective than that of a base

table by renaming columns without affecting the base table.

Summary

 SQL allows users to access data in relational database management

systems

 There are three groups of SQL commands viz., DDL, DML and

DCL.

 The Data Definition Language (DDL) part of SQL permits

database tables to be created or deleted.

 SQL language also includes syntax to update, insert, and delete

records. These query and update commands together form the Data

Manipulation Language (DML) part of SQL.

 The SQL Data Control Language (DCL) provides security for your

database. The DCL consists of the GRANT, REVOKE, COMMIT,

and ROLLBACK statements.

 Constraints are a way to limit the kind of data that can be stored in

a table.

 Relational databases like SQL Server use indexes to find data

quickly when a query is processed.

Key Words

SQL, DDL, DML, DCL, Constraints, Indexes

Database Management System

B. Santhosh Kumar 80

Self Assessment Questions

1) What does SQL stand for?

2) What SQL statement is used to delete table “Student”?

3) How can you insert a new record in table “Department”

4) With SQL, how can you insert "GJU" as the "FName" in the

"University" table?

5) How can you delete a record from table “student” where

“RollNo”=GJU501?

6) Explain the use of Grant And Revoke Commands?

7) What are Transaction Control Language Commands?

8) Explain the ways to create a new user?

Database Management System

B. Santhosh Kumar 81

Chapter 4

Introduction to Distributed Databases

4.1 Distributed Databases

In a distributed database system, the database is stored on several

computers. The computers in a distributed system communicate with one

another through various communication media such as high speed networks

or telephone lines. They do not share main memory or disks. The computer

in a distributed system may vary in size and function, ranging from

workstation up to mainframe systems.

 The computers in distributed systems are referred to as sites or

modes.

 Distributed databases are geographically separated.

 They are separately administered.

 It has a slower interconnection.

Types of Distributed Database

Homogenous:

i) All sites (nodes) have identical database management software, are

aware of one another.

ii) They are agreeing to cooperate in processing user’s requests.

iii) iLocal sites a portion of their autonomy in terms of their right to

change schemas or DBMS software. That software must also

cooperate with other sites in exchanging information about

transactions to make transaction processing possible across

multiple sites.

Heterogeneous:

i) Different sites may use different schemas and different

management system software. The sites may not be aware of one

another.

Database Management System

B. Santhosh Kumar 82

ii) They provide only limited facilities for cooperation in transaction

processing.

iii) The differences in schemas are often a major problem for query

processing, while the difference in software becomes a difficulty

for processing transactions that access multiple sites.

Fig 4.1. Distributed Architecture

Distributed Data Storage

 Consider a relation ‘r’ that is to be stored in the database. There are

two approaches storing this relation in the distributed database.

Replication

The system maintains several identical copies of the relation, and stores

each replica at a different site.

Fragmentation

The system partition the relation into several fragments, and stores each

fragment at a different site.

Database Management System

B. Santhosh Kumar 83

4.2 Data Replication

There are a number of advantages and disadvantages of replication.

Availability

 If one of the sites contain relation ‘r’ fails, then the relation ‘r’ can

be found in another site, thus the system can continue to process queries

involving ‘r’, despite the failure of one site.

Increased parallelism

 In the case where the majority of accesses to the relation ‘r’ result

in only the reading of the relation, then several sites can process queries

involving ‘r’ in parallel. The more replicas of ‘r’ there are, the greater the

chance that the needed data will be found in the site where the transaction

is executing. Hence, data replication minimizes movement of data between

sites

Increased overhead on update

 The system must ensure that all replicas of a relation ‘r’ are

consistent. Otherwise incorrect computation may result. Thus, whenever ‘r’

is updated, the update must be propagated to all sites contain replicas. The

result is increased overhead.

.4.3 Data Fragementaion

If relation ‘r’ is fragmented, ‘r’ is divided into a number of

fragments r1, r2….rn. These fragments contain sufficient information to

allow reconstruction of the original relation r.

Two different schemas for fragmenting a relation:

i)Horizontal fragmentation

ii)Vertical fragmentation

Horizontal fragmentation: It splits the relation by assigning each tuple of ‘r’

to one or more fragments.

Database Management System

B. Santhosh Kumar 84

Vertical fragmentation: It splits the relation by decomposing the scheme R

of relation ‘r’.

4.4 Transparency

 The user of a distributed system should not be required to know

either where the data are physically located or how the data can be accessed

at the specific local site. This characteristic is called as data transparency.

There are several terms of transparency.

 Fragementation transparency: Users are not required to know how

a relation has been fragmented.

 Replication transparency: Users view each data objects as logically

unique. The distributed system may replicate an object to increase

either system performance or data availability. Users do not have to

be concerned with what data objects have been replicated of where

replicas have been placed.

 Location transparency: Users are not required to know the physical

location of the data. The distributed database system should be able

to find any data as long as data identifier is supplied by the user

transaction.

4.5 Client/Server Database

 As personal computers became faster, more powerful and cheaper

there was a shift away from the centralized system architecture. Personal

computers replace terminals connected to centralized systems.

Correspondingly, personal computers assumed the user-interface

functionality that used to be handled directly by the centralized systems. As

a result, centralized systems today act as server systems that satisfy

requests generated b client systems.

 The figure shows the general structure of a client-server system.

Database Management System

B. Santhosh Kumar 85

 Fig.No:4.1 Client-Server System

 Standards such as ODBC and JDBC were developed to interface

clients with servers. Any client that uses the ODBC or JDBC interfaces can

connect to any server that provides the interface.

 The front-end (client) of a client/server system consists of tools

such as forms, report writers, and graphical user interface facilities. The

back end (server) manages access to structures, query evaluation and

optimization, concurrency control, and recovery. The interface between the

client and server is through SQL, or through an application program.

 The figure shows front-end and back-end functionality.

Fig.No:4.2 Front-end and Back-end Functionality

Database Management System

B. Santhosh Kumar 86

 The most widely accepted form of client/server systems is the

three-tier architecture. The components of this architecture are:

 The presentation (GUI) or user services

 Business rules or Business services

 Data server or data services.

Fig.No:4.3 Three-tier Architecture

In three-tier architecture, all layers interact with each other. The

client works as a query head and rules define hoe the query ought to be

addressed and worked on. The database provides the answer and solutions

to the client’s query as determined by the rule base and the content of the

database.

4.6 Benefits of client/server computing

1. Reduce operating costs: Client/server computing replaces

expensive large systems with less expensive smaller ones

networked together.

Database Management System

B. Santhosh Kumar 87

2. Platform Independence: It is not required to be locked into a

single vendor’s proprietary hardware or software environments.

3. Fast application Development: Advances in client/server tools

have led to rapid application development.

4. Improved performance: With more processing power scattered

throughout, the enterprise, the information is processed with

faster response time.

5. Easier data access and processing: Online interactive

client/server systems are a major improvement in usability over

older batch-oriented systems. More people are able to access

more data more quickly than ever before.

Summary

 Distributed databases bring the advantages of distributed

computing to the database management domain.

 We can define a distributed database (DDB) as a collection of

multiple logically interrelated databases distributed over a

computer network, and a distributed database management system

(DDBMS) as a software system that manages adistributed database

while making the distribution transparent to the user.

 The techniques that are used to break up the database into logical

units, called fragments.

 Data replication, which permits certain data to be stored in more

than one site

 Vertical fragmentation divides a relation "vertically" by columns.

 A fragmentation schema of a database is a definition of a set of

fragments that includes all attributes and tuples in the database.

 An allocation schema describes the allocation of fragments to sites

of the DDBS.

Database Management System

B. Santhosh Kumar 88

 The main feature that all DDBMS systems have in common is the

fact that data and software are distributed over multiple sites

connected by some form of communication network.

Key Words

Distributed Databases, Data Fragmentation, Replication, Distribution,

Client Server Architecture

Self-Assessment Questions

1) What are the main reasons for and potential advantages of distributed

2) databases?

3) What are the main software modules of a DDBMS? Discuss the main

functions of each of these modules in the context of the client-server

architecture.

4) What is a fragment of a relation? What are the main types of

fragments? Why is fragmentation a useful concept in distributed

database design?

5) Why is data replication useful in DDBMSs? What typical units of

data are replicated?

6) What is meant by data allocation in distributed database design?

What typical units of data are distributed over sites?

7) How is a horizontal partitioning of a relation specified? How can a

relation be put back together from a complete horizontal

partitioning?

8) How is a vertical partitioning of a relation specified? How can a

relation be put back together from a complete vertical partitioning?

9) Discuss what is meant by the following terms: degree of

homogeneity of a

Database Management System

B. Santhosh Kumar 89

10) DDBMS, degree of local autonomy of a DDBMS, federated DBMS,

distribution transparency, fragmentation transparency, replication,

transparency, multi database system.

11) Discuss the naming problem in distributed databases.

12) Discuss the different techniques for executing an equijoin of two

files located at different sites. What main factors affect the cost of

data transfer?

Database Management System

B. Santhosh Kumar 90

Chapter 5

Relational Database Design

5.1 Pitfalls in Database Design

 Redundant information in tuples

 Update anomalies

Redundant Information in Tuple

One goal of schema design is to minimize the storage space that the

base relations occupy. Grouping attributes into relation schemas has a

significant effect on the storage.

For (eg), compare the space used by the two base relations

EMPLOYEE and DEPARTMENT with EMP_DEPT base relation which is

the result of applying the NATURAL JOIN operation to EMPLOYEE and

DEPARTMENT.

In EMP_DEPT, the attribute values pertaining to a particular

department are repeated for every employee who works for that

department.In contrast, each department’s information appears once in

DEPARTMENT relation.

i.e, EMP_DEPT-(ename, eid, DOB, Address, dno, dname,

dMGRid)

Update Anomalies

Types

 insertion anomalies

 Deletion anomalies

 Modification anomalies

Insertion anomalies: These can be differentiated into two types

i) To insert a new employee tuple into EMP_DEPT, we must include

the attribute values for the department that the employee works

Database Management System

B. Santhosh Kumar 91

for, or nulls (if the employee does not work for a department as

yet).

 It is a difficult to insert a new department that has no employee as

yet in EMP_DEPT relation. The only way is to place null values in

the attributes for employee. This causes a problem because eid is a

primary of EMP_DEPT.

ii) Deletion anomalies: If we delete for EMP_DEPT an employee tuple

that happens to represents the last employee working for a particular

department, the information concerning that department is lost from the

database.

iii) Modification anomalies: In EMP_DEPT, if we change the value of

one of the attributes of a particular department, say the manager of

department 10 we must update the tuples of all employees work in that

department. Otherwise the database will become inconsistent.

5.2 Functional Dependencies

 Functional dependencies play a key role in differentiating good

database design from bad database designs. A functional dependency is a

type of constraint that is a generalization of the notation of key.

Definition:

A functional dependency is denoted is denoted by X→Y, between

two sets of attribute X and Y that are subsets of R specifies a constraint on

the possible tuples that can form a relation state r of R.

 The constraint is that, for any two tuples t1 and t2 in r that have

t1[X] = t2[X] also t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r

depends on, or are determined by, the values of the X component.

Database Management System

B. Santhosh Kumar 92

The values of the X component of a tuple uniquely (or

functionally) determine the values of the Y component. Y is functionally

dependent on X.

EMP-PROJ= {eid, pnumber, hours, ename, pname, plocation}

Eg., Consider the relation schema EMP-PROJ from the semantics of the

attributes.

The following functional dependencies should hold.

a) Eidename

b) Pnumber{pname, plocation}

c) {eid, pnumber}hours

Diagrammatic notation for displays FD’s

Each FD is displayed as a horizontal line. The LHS attributes of the

FDs are connected by vertical lines to the lines representing FD, while the

RHS attributes are connected by arrows pointing toward the attributes.

Inference Rules for Functional Dependencies

 F is the set of functional dependencies that are specified on relation

schema R. Numerous other FDs hold in all legal relation instance that

satisfy the dependencies in F.

The set of all such dependencies are called closure of F and is denoted by

F.

Database Management System

B. Santhosh Kumar 93

F= {Eid {ename, dob, address, dno}

dno { dname, dMGRid }

 We can infer the following additional FDs from F:

 eid {dname, dMGRid }

 dno dname, eid eid

 An FD XY is inferred from a set of dependencies F specifies on

R if XY holds in every relation state r that is legal extension of R. (ie)

whenever r satisfies all the dependencies in F, XY also holds in r.

 The closure F
+
 of F is the set of all FDs that can be inferred from F.

Inference rules that can be used to infer new dependencies from a given set

of dependencies.

IR1 (reflexive rule): If X Y then X Y.

IR2 (Augmentation rule): {XY} ≠ XZ YZ

IR3 (Transitive rule): {XY, YZ} ≠XZ

IR4 (Decomposition (or) Projective Rule): {XYZ} ≠ XY

IR5 (Union or Additive rule): {XY, XZ} ≠ XYZ

IR6 (Pseudo Transitive Rule): {XY, WYZ} ≠ WXZ

 IR1 states that a set of attributes always determines itself or any of its

subsets. Because IR1 generates dependencies that are always true.

Such dependencies are called trivial.

 IR2 says that adding same set of attributes to both LHS and RHS of a

dependency results another valid dependency.

 IR4 we can remove attributes from RHS.

 The inference rules IR1 through IR3 are known Armstrong’s

Inference Rules (or) Armstrong’s Axioms. Thus for each set of attributes X,

Database Management System

B. Santhosh Kumar 94

we determine the set X
+
 of attributes that are functionally determined by X

based on F X
+
 is called the closure of X under F.

Algorithm: Calculate X
+

(Closure of Attributes Sets)

X
+

:=X;

Repeat

 For each functional dependency x in X
+
 apply reflexivity and

augmentation rules on x add the resulting functional dependencies to ‘X’.

 For each pair of functional dependencies x1 and x2 can be

combined using transitivity add the resulting functional dependency X
+
.

 Until X
+
 does not change further.

5.3 Canonical Cover

 An attribute of a functional dependency is said to be extraneous if

we can remove it without changing the closure of the set of functional

dependencies.

Definition: Consider a set F of functional dependencies and the functional

dependency αβ in F.

 Attribute A is extraneous in α if A € α, and F logically implies {F-

{αβ}} U {{α-A}β}.

 Attribute A is extraneous if β if A € β, and the set of functional

dependencies

 {F - {α - β}} U {α {β – A}} logically implies F

 A canonical cover Fc for F is a set of dependencies such that F

logically implies all dependencies in Fc, and Fc logically implies all

dependencies in F. Fc must have the following properties.

 No functional dependency in Fc contains an extraneous attribute.

Database Management System

B. Santhosh Kumar 95

 Each left side of functional dependency in Fc is unique. (ie) there

are no two dependencies α1β1 and α2β2 in such that α1=α2.

(eg) Consider the following set F of functional dependencies on

schema (A, B, C).

 ABC

 BC

 AB

 ABC

Compute the canonical cover for F.

 There are two functional dependencies with the same set of

attributes on the left side of the arrow.

 ABC

 AB

These FD;s will be combine into ABC

 A is extraneous in ABC because F logically implies {F==.{

ABC}}U{ BC). This assertion is true because BC is

already is our set of FDs.

 C is extraneous in ABC, since ABC is logically implied by

AB and BC

Canonical cover is AB BC.

Dependency Preservation:

This property ensures that a constraint on the original relation can be

maintained by simply enforcing some constraint on each of the smaller

relations.

Database Management System

B. Santhosh Kumar 96

5.4 Normalization

 Normalization of data is a process of analyzing the given relation

schema based on their FDs and primary keys to archive the desirable

properties of

i) Minimizing redundancy

ii) Minimizing the insertion, deletion and update anomalies.

First Normal Form (1NF)

 It states that the domain of an attribute must include only atomic

(Simple, indivisible) values and that the value of any attribute in a tuple

must be a single value from the domain of that attribute.

TABLE-A

S# S_NAME S_ADDRESS P# P_NAME P_CITY P_STATUS QTY

S001 HCL North Street,

Chennai

P001 Mouse Delhi 100 150

S002 IBM West Street,

Madurai

P001 Mouse Mumbai 120 200

S002 IBM West Street,

Madurai

P002 Key Board Pune 75 150

S003 DELL South Street,

Coimbatore

P003 Hard Disk Delhi 100 180

S004 HCL East Street,

Trichy

P004 Dvd Drive Pune 75 200

 In the table-A the supplier address contains street and city. 1NF

states that the domain of an attribute must include only atomic (Simple,

indivisible) values. So we have to split S_ADDRESS into S_STREET and

S_CITY

Database Management System

B. Santhosh Kumar 97

S# S_NAME S_STREET S_CITY P# P_NAME P_CITY P_STATUS QTY

S001 HCL North Chennai P001 Mouse Delhi 100 150

S002 IBM West Madurai P001 Mouse Mumbai 120 200

S002 IBM West Madurai P002 Key

Board

Pune 75 150

S003 DELL South Coimbatore P003 Hard Disk Delhi 100 180

S004 HCL East Trichy P004 Dvd Drive Pune 75 200

Second Normal Form (2NF)

 A relation is said to be in the second normal form, if it is already in

the first normal from and it has no partial dependency (or) full functional

dependency.

 In the above table B the key attributes are S# and P#. The non-key

attributes must depend on key attribute. But the Table-B, S-NAME,

S_STREET and S-CITY depend on S# and P_NAME, P_CITY and

P_STATUS depends on P#. Only QTY depends on both key attributes S#

and P#. So we have to split the table.

S# S_NAME S_STREET S_CITY

S001 HCL North Chennai

S002 IBM West Madurai

S003 DELL South Coimbatore

S004 HCL East Trichy

P# P_NAME P_CITY P_STATUS

P001 Mouse Delhi 100

P001 Mouse Mumbai 120

P002 Key Board Pune 75

P003 Hard Disk Delhi 100

P004 Dvd Drive Pune 75

Database Management System

B. Santhosh Kumar 98

Third Normal Form (3NF)

A relation is said to be in the third normal form, if it is already in

the second normal from and it has no transitive dependency.

 In the above table C and E doesn’t having transitive dependency.

But in the Table-D the non-key attributes P_NAME, P_CITY and

P_STATUS depends on P#. But the P-STATUS transitively depends on

P_CITY. So we have to break the table.

P# P_NAME P_CITY

P001 Mouse Delhi

P001 Mouse Mumbai

P002 Key Board Pune

P003 Hard Disk Delhi

P004 Dvd Drive Pune

P_CITY P_STATUS

DELHI 100

MUMBAI 120

PUNE 75

Database Management System

B. Santhosh Kumar 99

BOYCE-CODD NORMAL FORM (BCNF)

 A relation is said to be in Boyce-Codd normal form if it is already

in the third normal from and every determinant is a candidate key. It is a

stronger version of 3NF.

Determinant: It is any field (Simple field or composite field) on which

some other field is fully functionally determinant.

Comparison of BCNF and 3NF

1. 3NF design is always dependency preserving and lossless

dependency preserving is difficult to achieve in BCNF sometimes.

2. BCNF strictly removes transitive dependency.

3. BCNF relation is in 3NF, but reverse is not possible

FOURTH NORMAL FORM (4NF)

A relation is said to be in the fourth normal form if it is already in

BCNF and it has no multi valued dependency.

Consider an unnormalized relation that contains information about

supplier, product and quantity. Each tuple contains supplier number,

product number repeated for each supplier name and product name

repeated for each product name.

S# P# QTY

S001 P001 100

 P002 150

S002 P001 100

 P002 150

S003 P001 200

Database Management System

B. Santhosh Kumar 100

Fourth normal form separates independent multivalued facts stored

in one table into separate tables. So we rewrite the unnormalized data of the

above table into normalized form.

S# P# QTY

S001 P001 100

S001 P002 150

S002 P001 100

S002 P002 150

S003 P001 200

FIFTH NORMAL FORM (5NF)

 A relation is said to be in 5NF if it is already in 4NF and it has no

join dependency.

Consider the Supplier_Product_Project relation.

S# P# J#

S001 P001 J001

S001 P001 J002

S001 P002 J001

S002 P001 J001

Supplier_Product_Project is obtainable if all the three projections

are joined. Two projections if joined do not give back the original

Supplier_Product_Project relations. We’ll get extra tuple while we are

joining two projections. If all the three relations are joined, then only we’ll

get the exact relations. This is called join dependency.

First we split the Supplier_Product_Project relation into three

projections.

Database Management System

B. Santhosh Kumar 101

Database Management System

B. Santhosh Kumar 102

Summary

 While designing a relational schema semantics of attributes,

reducing the redundant values in a tuple, reducing null values in

tuples and avoiding generation of spurious tuples are some of the

issues that need to be taken care of.

 Design the base relation schemas so that no insertion, deletion, or

modification anomalies are present in the relations.

 Redundancy arises when a relational schema forces an association

between attributes that is not natural. Functional dependencies can

'be used to identify such situations and suggest refinements to the

schema.

 A functional dependency is a property of the semantics of the

attributes in a relation. The semantics indicate how attributes relate

to one another, and specify the functional dependencies between

attributes.

 A table is in first normal form (1NF) if and only if all columns

contain only atomic values, that is, each column can have only one

value for each row in the table.

 A superkey is a set of one or more attributes, which, when taken

collectively, allows us to identify uniquely an entity or table. Any

subset of the attributes of a superkey that is also a superkey, and

not reducible to another superkey, is called a candidate key.

 A primary key is selected arbitrarily from the set of candidate keys

to be used in an index for that table.

 A table R is in Boyce-Codd normal form (BCNF) if for every

nontrivial FD X->A, X is a superkey.

Database Management System

B. Santhosh Kumar 103

Key Words

Database Design, Modification Anomalies, Decomposition, Functional

Dependency, Normalisation, First Normal Form, Second Normal Form,

Third Normal Form, BCNF, Lossless Join, Dependency Preservation,

Super key, Candidate Key, Primary Key

Database Management System

B. Santhosh Kumar 104

Self-Assessment Questions

1) What are the various guidelines that need to be taken care of while

designing a relational schema?

2) Describe update, insert and delete anomalies with the help of

examples.

3) Define functional dependencies?

4) Explain the inference rules?

5) Explain the concept of multi valued dependency?

6) What does the term unnormalized relation refer to? How did the

normal forms develop historically?

7) Write down all the rules for normalization and explain with example.

8) Define first, second, and third normal forms when only primary keys

are considered.

Database Management System

B. Santhosh Kumar 98

Third Normal Form (3NF)

A relation is said to be in the third normal form, if it is already in

the second normal from and it has no transitive dependency.

 In the above table C and E doesn’t having transitive dependency.

But in the Table-D the non-key attributes P_NAME, P_CITY and

P_STATUS depends on P#. But the P-STATUS transitively depends on

P_CITY. So we have to break the table.

P# P_NAME P_CITY

P001 Mouse Delhi

P001 Mouse Mumbai

P002 Key Board Pune

P003 Hard Disk Delhi

P004 Dvd Drive Pune

P_CITY P_STATUS

DELHI 100

MUMBAI 120

PUNE 75

Database Management System

B. Santhosh Kumar 99

BOYCE-CODD NORMAL FORM (BCNF)

 A relation is said to be in Boyce-Codd normal form if it is already

in the third normal from and every determinant is a candidate key. It is a

stronger version of 3NF.

Determinant: It is any field (Simple field or composite field) on which

some other field is fully functionally determinant.

Comparison of BCNF and 3NF

1. 3NF design is always dependency preserving and lossless

dependency preserving is difficult to achieve in BCNF sometimes.

2. BCNF strictly removes transitive dependency.

3. BCNF relation is in 3NF, but reverse is not possible

FOURTH NORMAL FORM (4NF)

A relation is said to be in the fourth normal form if it is already in

BCNF and it has no multi valued dependency.

Consider an unnormalized relation that contains information about

supplier, product and quantity. Each tuple contains supplier number,

product number repeated for each supplier name and product name

repeated for each product name.

S# P# QTY

S001 P001 100

 P002 150

S002 P001 100

 P002 150

S003 P001 200

Database Management System

B. Santhosh Kumar 100

Fourth normal form separates independent multivalued facts stored

in one table into separate tables. So we rewrite the unnormalized data of the

above table into normalized form.

S# P# QTY

S001 P001 100

S001 P002 150

S002 P001 100

S002 P002 150

S003 P001 200

FIFTH NORMAL FORM (5NF)

 A relation is said to be in 5NF if it is already in 4NF and it has no

join dependency.

Consider the Supplier_Product_Project relation.

S# P# J#

S001 P001 J001

S001 P001 J002

S001 P002 J001

S002 P001 J001

Supplier_Product_Project is obtainable if all the three projections

are joined. Two projections if joined do not give back the original

Supplier_Product_Project relations. We’ll get extra tuple while we are

joining two projections. If all the three relations are joined, then only we’ll

get the exact relations. This is called join dependency.

First we split the Supplier_Product_Project relation into three

projections.

Database Management System

B. Santhosh Kumar 101

Database Management System

B. Santhosh Kumar 102

Summary

 While designing a relational schema semantics of attributes,

reducing the redundant values in a tuple, reducing null values in

tuples and avoiding generation of spurious tuples are some of the

issues that need to be taken care of.

 Design the base relation schemas so that no insertion, deletion, or

modification anomalies are present in the relations.

 Redundancy arises when a relational schema forces an association

between attributes that is not natural. Functional dependencies can

'be used to identify such situations and suggest refinements to the

schema.

 A functional dependency is a property of the semantics of the

attributes in a relation. The semantics indicate how attributes relate

to one another, and specify the functional dependencies between

attributes.

 A table is in first normal form (1NF) if and only if all columns

contain only atomic values, that is, each column can have only one

value for each row in the table.

 A superkey is a set of one or more attributes, which, when taken

collectively, allows us to identify uniquely an entity or table. Any

subset of the attributes of a superkey that is also a superkey, and

not reducible to another superkey, is called a candidate key.

 A primary key is selected arbitrarily from the set of candidate keys

to be used in an index for that table.

 A table R is in Boyce-Codd normal form (BCNF) if for every

nontrivial FD X->A, X is a superkey.

Database Management System

B. Santhosh Kumar 103

Key Words

Database Design, Modification Anomalies, Decomposition, Functional

Dependency, Normalisation, First Normal Form, Second Normal Form,

Third Normal Form, BCNF, Lossless Join, Dependency Preservation,

Super key, Candidate Key, Primary Key

Database Management System

B. Santhosh Kumar 104

Self-Assessment Questions

1) What are the various guidelines that need to be taken care of while

designing a relational schema?

2) Describe update, insert and delete anomalies with the help of

examples.

3) Define functional dependencies?

4) Explain the inference rules?

5) Explain the concept of multi valued dependency?

6) What does the term unnormalized relation refer to? How did the

normal forms develop historically?

7) Write down all the rules for normalization and explain with example.

8) Define first, second, and third normal forms when only primary keys

are considered.

Database Management System

B. Santhosh Kumar 105

Chapter 6

Query Processing

6.1 Introduction

In this chapter we would like to discuss with you in detail about the

query processing in DBMS. In this lesson you will find many repetitions

from the previous chapters. That is included in this lesson purposefully in

order to maintain the continuity and meaningfulness of the topic which we

are going to deal with. So let’s start the lecture with a bang.

In most database systems, queries are posed in a non-procedural

language like SQL and as we have noted earlier such queries do not involve

any reference to access paths or the order of evaluation of operations. The

query processing of such queries by a DBMS usually involves the

following four phases:

 1. Parsing

 2. Optimization

 3. Code Generation

 4. Execution

The parser basically checks the query for correct syntax and

translates it into a conventional parse-tree (often called a query-tree) or

some other internal representation.

If the parser returns with no errors, and the query uses some user-

defined views, it is necessary to expand the query by making appropriate

substitutions for the views. It is then necessary to check the query for

semantic correctness by consulting the system catalogues and check for

semantic errors and type compatibility in both expressions and predicate

comparisons.

The optimizer is then invoked with the internal representation of

the query as input so that a query plan or execution plan may be devised for

Database Management System

B. Santhosh Kumar 106

retrieving the information that is required. The optimizer carries out a

number of operations. It relates the symbolic names in the query to data

base objects and checks their existence and checks if the user is authorized

to perform the operations that the query specifies.

In formulating the plans, the query optimizer obtains relevant

information from the metadata that the system maintains and attempts to

model the estimated costs of performing many alternative query plans and

then selects the best amongst them. The metadata or system catalog

consists of descriptions of all the databases that a DBMS maintains. Often,

the query optimizer would at least retrieve the following information:

 1. Cardinality of each relation of interest.

 2. The number of pages in each relation of interest.

 3. The number of distinct keys in each index of interest.

 4. The number of pages in each index of interest.

The above information and perhaps other information will be used by

the optimizer in modeling the cost estimation for each alternative query

plan.

Considerable other information is normally available in the system catalog:

 1. Name of each relation and all its attributes and their domains.

 2. Information about the primary key and foreign keys of each

relation.

 3. Descriptions of views.

 4. Descriptions of storage structures.

 5. Other information including information about ownership and

security issues.

Often this information is updated only periodically and not at every

update/insert/delete.

Database Management System

B. Santhosh Kumar 107

Also, the system catalog is often stored as a relational database

itself making it easy to query the catalog if a user is authorized to do so.

Information in the catalog is very important of course since query

processing makes use of this information extensively. Therefore more

comprehensive and more accurate information a database maintains the

better optimization it can carry out but maintaining more comprehensive

and more accurate information also introduces additional overheads and a

good balance therefore must be found. The catalog information is also used

by the optimizer in access path selection. These statistics are often updated

only periodically and are therefore not always accurate.

An important part of the optimizer is the component that consults

the metadata stored in the database to obtain statistics about the referenced

relations and the access paths available on them. These are used to

determine the most efficient order of the relational operations and the most

efficient access paths. The order of operations and the access paths are

selected from a number of alternate possibilities that normally exist so that

the cost of query processing is minimized. More details of query

optimization are presented in the next section.

If the optimizer finds no errors and outputs an execution plan, the

code generator is then invoked. The execution plan is used by the code

generator to generate the machine language code and any associated data

structures. This code may now be stored if the code is likely to be executed

more than once. To execute the code, the machine transfers control to the

code which is then executed.

6.2 Query Optimization

Before query optimization is carried out, one would of course need

to decide what needs to be optimized. The goal of achieving efficiency

itself may be different in different situations. For example, one may wish to

minimize the processing time but in many situations one would wish to

minimize the response time. In other situations, one may wish to minimize

the I/O, network time, memory used or some sort of combination of these

Database Management System

B. Santhosh Kumar 108

e.g. total resources used. Generally, a query processing algorithm A will be

considered more efficient than an algorithm B if the measure of cost being

minimized for processing the same query given the same resources using A

is generally less than that for B.

To illustrate the desirability of optimization, we now present an

example of a simple query that may be processed in several different ways.

The following query retrieves subject names and instructor names of all

current subjects in Computer Science that John Smith is enrolled in.

SELECT subject.name, instructor FROM student, enrolment, subject

WHERE

student.student_id = enrolment.student_id AND subject.subject_id =

nrolment.subject_id

AND subject.department = `Computer Science' AND student.name =

`John Smith'

To process the above query, two joins and two restrictions need to be

performed. There are a number of different ways these may be performed

including the following:

1. Join the relations student and enrolment, join the result with

subject and then do the restrictions.

 2. Join the relations student and enrolment, do the restrictions, join

the result with subject

 3. Do the restrictions, join the relations student and enrolment, join

the result with subject

 4. Join the relations enrolment and subject, join the result with

student and then do the restrictions.

Here we are talking about the cost estimates. Before we attempt to compare

the costs of the above four alternatives, it is necessary to understand that

estimating the cost of a plan is often non- trivial. Since normally a database

is disk-resident, often the cost of reading and writing to disk dominates the

Database Management System

B. Santhosh Kumar 109

cost of processing a query. We would therefore estimate the cost of

processing a query in terms of disk accesses or block accesses.

Estimating the number of block accesses to process even a simple

query is not necessarily straight forward since it would depend on how the

data is stored and which, if any, indexes are available. In some database

systems, relations are stored in packed form, that is, each block only has

tuples of the same relation while other systems may store tuples from

several relations in each block making it much more expensive to scan all

of a relation.

Let us now compare the costs of the above four options. Since

exact cost computations are difficult, we will use simple estimates of the

cost. We consider a situation where the enrolment database consists of

10,000 tuples in the relation student, 50,000 in enrolment, and 1,000 in the

relation subject. For simplicity, let us assume that the relations student and

subject have tuples of similar size of around 100 bytes each and therefore

and we can accommodate 10 tuples per block if the block is assumed to be

1 Kbytes in size. For the relation enrolment, we assume a tuple size of 40

bytes and thus we use a figure of 25 tuples/block. In addition, let John

Smith be enrolled in 10 subjects and let there be 20 subjects offered by

Computer Science. We can now estimate the costs of the four plans listed

above.

The cost of query plan (1) above may now be computed. Let the

join be computed by reading a block of the first relation followed by a scan

of the second relation to identify matching tuples (this method is called

nested-scan and is not particularly efficient. We will discuss the issue of

efficiency of algebraic operators in a later section). This is then followed by

the reading of the second block of the first relation followed by a scan of

the second relation and so on. The cost of R |X| S may therefore be

estimated as the number of blocks in R times the number of blocks in S.

Since the number of blocks in student is 1000 and in enrolment 2,000, the

total number of blocks read in computing the join of student and enrolment

is 1000X 2000=2,000,000 block accesses. The result of the join is 50,000

Database Management System

B. Santhosh Kumar 110

tuples since each tuple from enrolment matches with a tuple from student.

The joined tuples will be of size approximately 140 bytes since each tuple

in the join is a tuple from student joined with another from enrolment.

Given the tuple size of 140 bytes, we can only fit 7 tuples in a block and

therefore we need about 7,000 blocks to store all 50,000 joined tuples. The

cost of computing the join of this result with subject is 7000 X 100= 700,00

block accesses. Therefore the total cost of plan (1) is approximately

2,700,000 block accesses.

To estimate the cost of plan (2), we know the cost of computing the

join of student and enrolment has been estimated above as 2,000,000 block

accesses. The result is 7000 blocks in size. Now the result of applying the

restrictions to the result of the join reduces this result to about 5-10 tuples

i.e. about 1-2 blocks. The cost of this restriction is about 7000 disk

accesses. Also the result of applying the restriction to the relation subject

reduces that relation to 20 tuples (2 blocks). The cost of this restriction is

about 100 block accesses. The join now only requires about 4 block

accesses. The total cost therefore is approximately 2,004,604.

To estimate the cost of plan (3), we need to estimate the size of the

results of restrictions and their cost. The cost of the restrictions is reading

the relations student and subject and writing the results. The reading costs

are 1,100 block accesses. The writing costs are very small since the size of

the results is 1 tuple for student and 20 tuples for subject. The cost of

computing the join of student and enrolment primarily involves the cost of

reading enrolment. This is 2,000 block accesses. The result is quite small in

size and therefore the cost of writing the result back is small. The total cost

of plan (3) is therefore 3,100 block accesses.

Similar estimates may be obtained for processing plan (4). We will

not estimate this cost, since the above estimates are sufficient to illustrate

that brute force method of query processing is unlikely to be efficient. The

cost can be significantly reduced if the query plan is optimized. The issue

of optimization is of course much more complex than estimating the costs

Database Management System

B. Santhosh Kumar 111

like we have done above since in the above estimation we did not consider

the various alternative access paths that might be available to the system to

access each relation.

The above cost estimates assumed that the secondary storage

access costs dominate the query processing costs. This is often a reasonable

assumption although the cost of communication is often quite important if

we are dealing with a distributed system. The cost of storage can be

important in large databases since some queries may require large

intermediate results.

The cost of CPU of course is always important and it is not

uncommon for database applications to be CPU bound than I/O bound as is

normally assumed. In the present chapter we assume a centralized system

where the cost of secondary storage access is assumed to dominate other

costs although we recognize that this is not always true. For example,

system R uses cost = page fetches + w cpu utilization

When a query is specified to a DBMS, it must choose the best way to

process it given the information it has about the database. The optimization

part of query processing generally involves the following operations.

 1. A suitable internal representation

 2. Logical transformation of the query

 3. Access path selection of the alternatives

 4. Estimate costs and select best

We will discuss the above steps in detail.

Internal Representation

As noted earlier, a query posed in a query language like SQL must

first be translated to an internal representation suitable for machine

representation. Any internal query representation must be sufficiently

powerful to represent all queries in the query language (e.g. SQL). The

internal representation could be relational algebra or relational calculus

Database Management System

B. Santhosh Kumar 112

since these languages are powerful enough (they have been shown to be

relationally complete by E.F. Codd) although it will be necessary to modify

them from what was discussed in an earlier chapter so that features like

Group By and aggregations may be represented. A representation like

relational algebra is procedural and therefore once the query is represented

in that representation, a sequence of operations is clearly indicated.

Other representations are possible. These include object graph,

operator graph (or parse tree) and tableau. Further information about other

representations is available in Jarke and Koch (1984) although some sort of

tree representation appears to be most commonly used (why?). Our

discussions will assume that a query tree representation is being used.

In such a representation, the leaf nodes of the query tree are the

base relations and the nodes correspond to relational operations.

Logical Transformations

At the beginning of this chapter we showed that the same query

may be formulated in a number of different ways that are semantically

equivalent. It is clearly desirable that all such queries be transformed into

the same query representation. To do this, we need to translate each query

to some canonical form and then simplify.

This involves transformations of the query and selection of an

optimal sequence of operations. The transformations that we discuss in this

section do not consider the physical representation of the database and are

designed to improve the efficiency of query processing whatever access

methods might be available. An example of such transformation has

already been discussed in the examples given. If a query involves one or

more joins and a restriction, it is always going to be more efficient to carry

out the restriction first since that will reduce the size of one of the relations

(assuming that the restriction applies to only one relation) and therefore the

cost of the join, often quite significantly.

Database Management System

B. Santhosh Kumar 113

Heuristic Optimization

In the heuristic approach, the sequence of operations in a query is

reorganized so that the query execution time improves. Deterministic

Optimization -- In the deterministic approach, cost of all possible forms of

a query are evaluated and the best one is selected.

Common Subexpression

In this technique, common subexpressions in the query, if any, are

recognised so as to avoid executing the same sequence of operations more

than once.

Simple Hash Join Method

This method involves building a hash table of the smaller relation

R by hashing each tuple on its hash attribute. Since we have assumed that

the relation R is too large to fit in the main memory, the hash table would

in general not fit into the main memory. The hash table therefore must be

built in stages. A number of addresses of the hash table are first selected

such that the tuples hashed to those addresses can be stored in the main

memory.

The tuples of R that do not hash to these addresses are written back to the

disk. Let these tuples be relation R’. Now the algorithm works as follows:

(a) Scan relation R and hash each tuple on its join attribute. If the

hashed value is equal to one of the addresses that are in the main

memory, store the tuple in the hash table. Otherwise write the tuple

back to disk in a new relation R’.

(b) Scan the relation S and hash each tuple of S on its join attribute.

One of the following three conditions must hold:

 1. The hashed value is equal to one of the selected values, and

one or more tuple of R with same attribute value exists. We

combine the tuples of R that match with the tuple of S and

output as the next tuples in the join.

Database Management System

B. Santhosh Kumar 114

 2. The hashed value is equal to one of the selected values, but

there is no tuple in R with same join attribute value. These

tuple of S are rejected.

 3. The hashed value is not equal to one of the selected values.

These tuples are written back to disk as a new relation S’.

The above step continues till S is finished.

(c) Repeat steps (a) and (b) until either relation R’ or S’ or both are

exhausted.

Grace Hash-Join Method

This method is a modification of the Simple Hash Join method in

that the partitioning of R is completed before S is scanned and partitioning

of S is completed before the joining phase. The method consists of the

following three phases:

 1. Partition R - Since R is assumed to be too large to fit in the main

memory, a hash algorithm involves partitioning the relation into n

buckets, each bucket corresponding to a hash table entry. The

number of buckets n is chosen to be large enough so that each bucket

will comfortably fit in the main memory.

 2. Partition S - The second phase of the algorithm involves

partitioning the relation S into the same number (n) of buckets, each

bucket corresponding to a hash table entry. The same hashing

function as for R is used.

 3. Compute the Join - A bucket of R is read in and the corresponding

bucket of S is read in. Matching tuples from the two buckets are

combined and output as part of the join.

Hybrid Hash Join Method

The hybrid hash join algorithm I s a modification of the Grace hash

join method.

Database Management System

B. Santhosh Kumar 115

Aggregation

Aggregation is often found in queries given the frequency of

requirements of finding an average, the maximum or how many times

something happens. The functions supported in SQL are average,

minimum, maximum, count, and sum. Aggregation can itself be of different

types including aggregation that only requires one relation, for example

finding the maximum mark in a subject, or it may involve a relation but

require something like finding the number of students in each class. The

latter aggregation would obviously require some grouping of the tuples in

the relation before aggregation can be applied.

Summary

 The query processing by a DBMS usually involves the four

phases Parsing Optimization, Code Generation, and Execution.

 The parser basically checks the query for correct syntax and

translates it into a conventional parse-tree (often called a query-

tree) or some other internal representation.

 The optimizer invokes the internal representation of the query as

input so that a query plan or execution plan may be devised for

retrieving the information that is required.

 Heuristic optimization often includes making transformations to

the query tree by moving operators up and down the tree so that

the transformed tree is equivalent to the tree before the

transformations.

Key Words

Query Processing, Heuristics, Query Optimisation, Self-

Assessment

Database Management System

B. Santhosh Kumar 116

Sample Questions

1) Discuss the following rules governing the manipulation of

relational algebraic expressions?

2) Explain the algorithms used for the processing of join operation?

3) Explain how you could estimate costs while performing q

References/Suggested Readings

4) Data Base Systems by C.J.Date

5) Data Base Management Systems by Alexis Leon, Mathews Leon

6) http://databases.about.com/library

http://databases.about.com/library

Database Management System

B. Santhosh Kumar 117

Chapter 7

TEXT AND DATA MINING

7.1 Introduction

A potentially useful intellectual tool for researchers is the ability to

make connections between seemingly unrelated facts, and as a consequence

create inspired new ideas, approaches or hypotheses for their current work.

This can be achieved through a process known as text mining (or data

mining if it focuses on non-bibliographic datasets).

Text/data mining currently involves analysing a large collection of

often unrelated digital items in a systematic way and to discover previously

unknown facts, which might take the form of relationships or patterns that

are buried deep in an extensive collection.

These relationships would be extremely difficult, if not impossible,

to discover using traditional manual-based search and browse techniques.

Both text and data mining build on the corpus of past publications and

build not so much on the shoulders of giants as on the breadth of past

published knowledge and accumulated mass wisdom.

The claim currently being made for text and data mining is that

they will speed up the research process and capitalise on work which has

been done in the past in a new and effective way. However, a number of

features need to be in place before this can happen. These include:

 Access to a vast corpus of research information

 In a consistent and interoperable form

 Freely accessible, without prohibitive authentication controls

 Covering digitised text, data and other media sources

 Unprotected by copyright controls (over creation of derivative

works)

 A single point of entry with a powerful and generic search engine

Database Management System

B. Santhosh Kumar 118

 A sophisticated mechanism for enabling the machine (computer) to

analyse the collection for hidden relationships

Currently the full potential for text/data mining is not being fulfilled

because several of the above requirements are not being met. There are too

many ‘silos’ of heavily protected document servers (such as those

maintained independently by the many stm journal publishers) to provide

the necessary critical mass of accessible data. There is also little

interoperability between the various protocols and access procedures.

Text and data mining is still at an early stage in its development, but

given the unrelated push towards an ‘open access’ environment (which

undermines the ‘silo’ effect) text/data mining may become significant as a

research tool within the next two to five years.

7.2 Historical Development

Forms of text and data mining have been around for some fifty

years. The intelligence gathering community was an early recogniser of the

usefulness of this technique. Artificial intelligence and diagnostics have

also employed text and data mining procedures.

In the 1980’s abstracts in the MEDLINE database were used as a

platform against which to test text mining approaches. Life science text has

been used at the front-end of studies employing text mining largely because

the payoffs in terms of drugs and health care are so high.

All this was a prelude to a shift in the way users came to terms with

the information explosion. There were two more recent elements.

• The first is that ‘collecting’ digital material became different from

the way physical collections were built up and used. In the print

world filing cabinets became full of printed articles from which the

user absorbed the content through some unclear form of osmosis.

Now people find and collect things online.

• They build up collections, or personal libraries, of the digital items

on their computers and laptops. The difference is that these personal

Database Management System

B. Santhosh Kumar 119

libraries – which often still go unread – are interrogated using more

efficient electronic search and retrieval software

• The second change is that there is a new approach to digital

‘computation’. The processes of ‘search’ and ‘collections’ became

disentangled. Google came along with its multiple services which

raised the searching/discovery stakes. It offered access to a world of

digital information much more extensive than that which was typical

of a print-centric world.

The research community often assumes Google can reveal all the

hidden secrets in the documents. But this is not the case, and it is the

application of full-text mining software and data mining procedures which

expose more of the relationships which exist between individual

documents. These relationships are often hidden deeply within different

parts of the growing mountain of documentation. Text mining builds on

Google’s existence – it does not replace or compete with it.

To be really effective text and data mining requires access to large

amounts of literature. This is the real challenge facing the widespread

adoption of text/data mining techniques.

7.3 Working Principles

Text mining involves the application of techniques from areas such

as information retrieval, natural language processing, information

extraction and data mining. These various stages can be combined together

into a single workflow.

Information Retrieval (IR) systems identify the documents in a

collection which match a user’s query. The most well-known IR systems

are search engines such as Google, which allows identification of a set of

documents that relate to a set of key words. As text mining involves

applying very computationally-intensive algorithms to large document

collections, IR can speed up the discovery cycle considerably by reducing

the number of documents found for analysis. For example, if a researcher is

Database Management System

B. Santhosh Kumar 120

interested in mining information only about protein interactions, he/she

might restrict their analysis to documents that contain the name of a

protein, or some form of the verb ‘to interact’, or one of its synonyms.

Already, through application of IR, the vast accumulation of scientific

research information can be reduced to a smaller subset of relevant items.

Natural Language Processing (NLP) is the analysis of human

language so that computers can understand research terms in the same way

as humans do. Although this goal is still some way off, NLP can perform

some types of analysis with a high degree of success. For example:

 Part-of-speech tagging classifies words into categories such as

nouns, verbs or adjectives

 Word sense disambiguation identifies the meaning of a word, given

its usage, from among the multiple meanings that the word may

have

 Parsing performs a grammatical analysis of a sentence. Shallow

parsers identify only the main grammatical elements in a sentence,

such as noun phrases and verb phrases, whereas deep parsers

generate a complete representation of the grammatical structure of

a sentence

The role of NLP is to provide the systems in the information

extraction phase (see below) with linguistic data that the computer needs to

perform its ‘mining’ task.

Information Extraction (IE) is the process of automatically

obtaining structured data from an unstructured natural language document.

Often this involves defining the general form of the information that the

researcher is interested in as one or more templates, which are then used to

guide the extraction process. IE systems rely heavily on the data generated

by NLP systems. Tasks that IE systems can perform include:

 Term analysis, which identifies the terms in a document, where a

term may consist of one or more words. This is especially useful

Database Management System

B. Santhosh Kumar 121

for documents that contain many complex multi-word terms, such

as scientific research papers

 Named-entity recognition, which identifies the names in a

document, such as the names of people or organisations. Some

systems are also able to recognise dates and expressions of time,

quantities and associated units, percentages, and so on

 Fact extraction, which identifies and extracts complex facts from

documents. Such facts could be relationships between entities or

events

 A very simplified example of the form of a template and how it

might be filled from a sentence is shown in Figure 1. Here, the IE

system must be able to identify that ‘bind’ is a kind of interaction,

and that ‘myosin’ and ‘actin’ are the names of proteins. This kind

of information might be stored in a dictionary or an ontology,

which defines the terms in a particular field and their relationship

to each other. The data generated during IE are normally stored in a

database ready for analysis by the final stage, that of data mining.

Data Mining (DM) (often known as knowledge discovery) is the

process of identifying patterns in large sets of data. When used in text

mining, DM is applied to the facts generated by the information extraction

phase. Continuing with the protein interaction example, the researcher may

have extracted a large number of protein interactions from a document

collection and stored these interactions as facts in a separate database.

By applying DM to this separate database, the researcher may be

able to identify patterns in the facts. This may lead to new discoveries

about the types of interactions that can or cannot occur, or the relationship

between types of interactions and particular diseases, and so on.

The results of the DM process are put into another database that

can be queried by the end-user via a suitable graphical interface. The data

Database Management System

B. Santhosh Kumar 122

generated by such queries can also be represented visually, for example, as

a network of protein interactions.

Text mining is not just confined to proteins, or even biomedicine

though this is an area where there has been much experimentation using

text/data mining techniques. Its concepts are being extended into many

other research disciplines. Increasing interest is being paid to multilingual

data mining: the ability to gain information across languages and cluster

similar items from different linguistic sources according to their meaning.

Text and data mining is a burgeoning new interdisciplinary field in

support of the scientific research effort. There are a number of examples of

such services in existence though few have so far broken through to

become mainstream processes within the scientific research effort.

Examples of Text Mining

Research and development departments of major companies,

including IBM and Microsoft, are researching text mining techniques and

developing programmes to further automate the mining and analysis

processes. Text mining software is also being researched by different

companies working in the area of search and indexing in general as a way

to improve their results. There are also a large number of companies that

provide commercial computer programmes.

• AeroText - provides a suite of text mining applications for

content analysis. Content used can be in multiple languages

• AlchemyAPI - SaaS-based text mining platform that

supports 6+ languages. Includes named entity extraction,

keyword extraction, document categorization, etc.

• Autonomy - suite of text mining, clustering and

categorization solutions for a variety of industries

• Endeca Technologies - provides software to analyze and

cluster unstructured text.

Database Management System

B. Santhosh Kumar 123

• Expert System S.p.A. - suite of semantic technologies and

products for developers and knowledge managers.

• Fair Isaac - leading provider of decision management

solutions powered by advanced analytics (includes text

analytics).

• Inxight - provider of text analytics, search, and unstructured

visualisation technologies. (Inxight was bought by Business

Objects that was bought by SAP AG in 2008)

• Nstein - text mining solution that creates rich metadata to

allow publishers to increase page views, increase site

stickiness, optimise SEO, automate tagging, improve search

experience, increase editorial productivity, decrease

operational publishing costs, increase online revenues

• Pervasive Data Integrator - includes Extract Schema

Designer that allows the user to point and click identify

structure patterns in reports, html, emails, etc. for extraction

into any database

• RapidMiner/YALE - open-source data and text mining

software for scientific and commercial use.

• SAS - solutions including SAS Text Miner and Teragram -

commercial text analytics, natural language processing, and

taxonomy software leveraged for Information Management.

• SPSS - provider of SPSS Text Analysis for Surveys, Text

Mining for Clementine, LexiQuest Mine and LexiQuest

Categorize, commercial text analytics software that can be

used in conjunction with SPSS Predictive Analytics

Solutions.

• Thomson Data Analyzer - enables complex analysis on

patent information, scientific publications and news.

Database Management System

B. Santhosh Kumar 124

• LexisNexis - provider of business intelligence solutions

based on an extensive news and company information

content set. Through the recent acquisition of Datops

LexisNexis is leveraging its search and retrieval expertise to

become a player in the text and data mining field.

• LanguageWare - Text Analysis libraries and customization

tooling from IBM

• There has been much effort to incorporate text and data

mining within the bioinformatics area. The main

developments have been related to the identification of

biological entities (named entity recognition), such as protein

and gene names in free text. Specific examples include:

• XTractor - discovering new scientific relations across

PubMed abstracts. A tool to obtain manually annotated

relationships for proteins, diseases, drugs and biological

processes as they get published in the PubMed bibliographic

database.

• Chilibot - tool for finding relationships between genes or

gene products.

• Information Hyperlinked Over Proteins (iHOP) "A network

of concurring genes and proteins extends through the

scientific literature touching on phenotypes, pathologies and

gene function. By using genes and proteins as hyperlinks

between sentences and abstracts, the information in PubMed

can be converted into one navigable resource"

• FABLE - gene-centric text-mining search engine for

MEDLINE

• GoPubMed - retrieves PubMed abstracts for search queries,

then detects ontology terms from the Gene Ontology and

Medical Subject Headings in the abstracts and allows the

Database Management System

B. Santhosh Kumar 125

user to browse the search results by exploring the ontologies

and displaying only papers mentioning selected terms, their

synonyms or descendants.

• LitInspector - gene and signal transduction pathway data

mining in PubMed abstracts.

• PubGene - co-occurrence networks display of gene and

protein symbols as well as MeSH, GO, PubChem and

interaction terms (such as "binds" or "induces") as these

appear in MEDLINE records (that is, PubMed titles and

abstracts).

• PubAnatomy - interactive visual search engine that provides

new ways to explore relationships among Medline literature,

text mining results, anatomical structures, gene expression

and other background information.

• NextBio - life sciences search engine with a text mining

functionality that utilises PubMed abstracts and clinical trials

to return concepts relevant to the query based on a number of

heuristics including ontology relationships, journal impact,

publication date, and authorship.

Text mining not only extracts information on protein interactions

from documents, but it can also go one step further to discover patterns in

the extracted interactions. Information may be discovered that would have

been extremely difficult to find, even if it had been possible to read all the

documents – which in itself is an increasing impossibility.

7.4 Organisations involved in Text and Data Mining

A number of centres have been set up to build on the text and data

mining techniques. These include:

Database Management System

B. Santhosh Kumar 126

The National Centre for Text Mining (NaCTeM)

The National Centre for Text Mining (NaCTeM) is the first

publicly-funded text mining centre in the world. It provides text mining

services for the UK academic community. NaCTeM is operated by the

University of Manchester with close collaboration with the University of

Tokyo and Liverpool University. It provides customised tools, research

facilities and offers advice and provides software tools and services.

Funding comes primarily from the Joint Information Systems

Committee (JISC) and two of the UK Research Councils, the BBSRC

(Biotechnology and Biological Sciences Research Council) and EPSRC

(Engineering and Physical Sciences Research Council). The services of the

Centre are available free of charge for members of higher and further

education institutions in the UK.

With an initial focus on text mining in the biological and

biomedical sciences, research has since expanded into other areas of

science, including the social sciences, the arts and humanities. Additionally,

the Centre also organises and host workshops and tutorials and provides

access to document collections and text-mining resources.

School of Information at University of California, Berkeley

In the United States, the School of Information at University of

California, Berkeley is developing a program called BioText to assist

bioscience researchers in text mining and. Analysis. A grant of $840,000

has been received from the National Science Foundation to develop the

search mechanism. Currently BioText runs against a database of some 300

open access journals. The project leader of BioText is Professor Marti

Hearst.

TEMIS

TEMIS is a software organisation established in 2000 which has

centres in France, Germany and the USA. It focuses on pharmaceutical and

publishing applications and has a client base which includes Elsevier,

Database Management System

B. Santhosh Kumar 127

Thomson and Springer. Thomson Scientific uses TEMIS to rescue data

which had been captured in another format (for example, the BIOSIS

format) and restructures the data according to the Thompson house style. It

can process three documents per second. MDL, a former Elsevier

company, uses TEMIS to automatically extract facts. A new database is

created from analysing text documents. Springer uses TEMIS to enrich

journals with hyperlinks into major reference works.

UK PubMed Central (UKPMC)

Text and data mining will come under the agreed phased

extensions of UKPMC developments, as adopted by the management and

advisory group for UKPMC. Most of the text and data mining work will be

channeled via University of Manchester (notably NaCTeM) and European

Bioinformatics Institute (EBI), joint collaborators with the British Library

on UKPMC.

Initially it was felt that the text mining work being done by

Manchester and EBI were competitive, but it appears that EBI is focusing

on indexing and NaCTeM on natural language processing. The ‘best of

breed’ from both organisations will be incorporated to create a prototype

text mining tool. Some parts already exist – genome and protein listing for

example. But it is felt that the work is still some two years away from

creating a fully effective system and interface. These tools will eventually

plug-ins into UKPMC. NaCTeM’s ‘myexperiment’ will also be made

available within British Library’s RIC (see previous ICSTI Insight on

‘Workflows’) However the work for RIC is a different project with

NaCTeM.

Google

Google’s Search Appliance 6.0 searches 30 million documents and

provides search across a variety of other internal and external sources -

including file shares, intranets, databases, applications, hosted services and

content management systems.

Database Management System

B. Santhosh Kumar 128

Microsoft Research

Microsoft’s Text Mining, Search, and Navigation group undertakes

research in information retrieval, machine learning, data mining,

computational linguistics, and human-computer interaction. It is deeply

involved with the academic community and works closely with the various

Microsoft product teams. The primary contact is Chris Burges.

Other Centres

There are other developments taking place in text and data mining

– notably at Sheffield University in the UK with their work on the Cancer

grid and the National Cancer Research centre. There are also individuals

who are pushing the boundaries of text and data mining. Professor Carol

Goble, from Manchester University, is one such expert.

Another more controversial figure in this area is Dr Peter Murray

Rust from University of Cambridge who has done much to advance the

cause of text and data mining in the field of chemistry whilst challenging

the very basis of the current scholarly publishing system. In effect we are

seeing more and more peripheral use of text mining for specific

applications, but so far it has not reached mainstream publishing activities

for reasons outlined in the next section.

7.5 The Challenges

Intellectual Property Rights

As it stands, each publisher maintain their own ‘digital silos’ of

information, and cross searching among these separate silos is undertaken

more in the breach than the observance. Yet it is only through the

dismantlement of the legal protections around such silos that effective text

and data mining can take place. The greater the common document source

being mined the more effective the results achieved.

Such a cross-silo approach could be achieved in a number of ways.

Either through agreements reached with the existing publishers to allow

cross searching of text files among publisher silos on a licence basis or

Database Management System

B. Santhosh Kumar 129

through the adoption by the industry at large of open access as the standard

business model. Most databases which include a sweat of the brow activity

may only be accessible if the customer has paid a subscription or licence

fee.

Even if this hurdle is overcome, the terms of the subscription and

licence may be such that the owner of the database will still not allow

reformulation of the material in any way. Several commercial journal

publishers have raised concerns that the creation of ‘derivative works’

could undermine the commercial opportunity facing their primary journals.

Nevertheless, a number of stm publishers have recently reached an

agreement with the Wellcome Trust to allow text mining to take place on

works which Wellcome has funded (through payment of author fees) but

only within the terms of the licences agreed with each publisher.

This still remains restrictive as far as text mining is concerned.

Licences would need to be changed to open up the database to unrestricted

mining activity, even if they lead to derivative works being created. This is

what the user community wants, this is what Science needs, this is what the

traditional publishing industry wants to avoid. But we are seeing further

instances of the licences slowly being adapted to meet this user demand.

The UK Model NESLi2 Licence for Journals

In the UK there is a central negotiating service offered by JISC

whereby the 180 or so higher education institutions can be reached through

a centrally negotiated contracts. The Model NESLI2 Licence for Journals

has been in place for a number of years and has been the basis for special

terms being given by publishers to UK academe as a result of the wide

audience reached through a single negotiated agreement.

In May 2009 a new clause was added to the NESLI License which

will come into effect for 2010. The relevant clause is given below

Database Management System

B. Santhosh Kumar 130

Permitted Uses

The clause has in fact only been added to the NESLi2 website in

the past few months and will be used in the negotiations with publishers for

2010. As such we do not yet know how publishers may react to it. It was

brought into the licence as JISC (and their negotiating partner, Content

Complete) were aware that the academic community is likely to want this

facility.

There will only be negotiations with a limited number of publishers

for 2010, because there are already multi-year agreements with several of

the big publishers in particular (for example, with Elsevier there are 3-4

year licences in place). It means, according to Content Complete, that these

larger publishers will only have to confront this clause when their existing

licence term expires and the new one comes up for re-negotiation.

Nature Publishing Group

The Nature Publishing Group (NPG) is one publisher which

anticipated such developments early on and has agreed to a wider

application of text and data mining techniques against its content.

Researchers can now data mine and text mine author manuscripts

from NPG journals archived in PubMed Central, UK PubMed Central

(UKPMC) and other institutional and subject repositories. The terms were

developed in consultation with the Wellcome Trust. Under NPG’s terms of

reuse, users may view, print, copy, download and text and data-mine the

content for the purposes of academic research. Re-use should only be for

academic purposes; commercial reuse is not permitted.

The articles will be accessible via the UK PubMed Central OAI

service (UKPMC-OAI), an implementation of the Open Archives Initiative

Protocol for Metadata Harvesting (OAI-PMH). NPG’s re-use terms will be

included in the metadata of these archived manuscripts. However, there is

a limit to the number of words which can be reused without permission as a

result of a successful text mining of the Nature publications. \

Database Management System

B. Santhosh Kumar 131

Also, articles published by Nature Publishing Group (NPG) which

are made available through academic repositories remain subject to

copyright. Any reuse is subject to permission from NPG. The relevant part

of the NPG licence is:

Wholesale re-publishing is prohibited

Archived content may not be published verbatim in whole or in

part, whether or not this is done for Commercial Purposes, either in print or

online.

This restriction does not apply to reproducing normal quotations

with an appropriate citation. In the case of text-mining, individual words,

concepts and quotes up to 100 words per matching sentence may be reused,

whereas longer paragraphs of text and images cannot (without specific

permission from NPG).

Moral rights

 All re-use must be fully attributed. Attribution must take the

form of a link - using the article DOI - to the published article

on the journal's website.

 All re-use must ensure that the authors' moral right to the

integrity of their work is not compromised.

The complete terms of reuse can be seen at:

http://www.nature.com/authors/editorial_policies/license.html#terms

Derivative Works

Derivative works are those new publications which are the result of

mashing-up material from a number of publishers’ copyrighted material.

There may be no original primary research in the derivative work but it

may have importance nonetheless in giving insight into something new

from the sum of the (published) parts.

As indicated, publishers are suspicious that creating derivative

works through text mining might compromise the publishers’ commercial

Database Management System

B. Santhosh Kumar 132

chances – that it will create a whole new publishing activity which is a

parasite on mainstream publishing. As such the publishing industry feels

that it should control it in some way and be the recipient for any new

commercial returns which are derived from mining their earlier work in an

automated way.

However, there is an interesting question about being able to isolate

any one publisher’s work included in any particular text mining output.

Though the publisher’s server may have been interrogated by the text

mining software, connecting the results of the mining process back to any

one of the original information sources may prove difficult. Multiple

results may have been derived from a wide variety of text sources and how

can one be given credit for any one item? Computers are logical, not

creative. Computation using text mining to create a derivate work is

essentially a mechanical activity. Derivative works can therefore be based

on hundreds or thousands of separate copyrighted works. Isolating the

original ownership of an idea or wording may be impossible.

Text and data mining also needs to encompass the creation of

extracts, translations and summaries of developments in various fields.

Some of these derivative works are mechanically produced but others, such

as creating a translation, still need elements of human creativity. So much

so that copyright may be vested in the derived translation. There is an

outstanding legal question of who can determine what is included from

whom (copyright owner) in a newly derived work?

Technical Issues

A key technical issue is whether text/data mining is undertaken

from a single large accumulated database held centrally, or else whether a

federated search system is adopted with knowbots being launched to pull in

results from remote and privately held databases. A centralised database

also raises issues of resources. Not only in terms of the infrastructure to

support a large central file but also in the support services necessary to run

it. Computation can take place in a more controlled environment on a

Database Management System

B. Santhosh Kumar 133

single aggregated database, though this may not always be possible for a

variety of technical and IPR reasons.

A distributed model raises issues around data normalisation, of

performance levels, of other standardisation issues. A distributed or

federated system requires conformity by all involved to common metadata

standards to allow effective cross reference and indexing. If the need is to

rely on a federated approach the issue of trust arises – trust that the remote

database of text and data will always be there, curated and consistent in its

approach to metadata creation and full-text production.

In support of a federated approach to text and data mining one can

see the emergence of ‘the cloud’ as a mechanism for processing large

amounts of data using the existing powerful computer resources made

available by organizations such as Amazon, Yahoo, Microsoft, HP, etc. A

federated powerful processing infrastructure is in place ‘in the cloud’.

7.6 Implications of Text and Data Mining

Providing a text/data mining facility for Science requires a new

means of collaboration between existing and future stakeholders to accept

data and text mining as being effective and acceptable processes. In

particular, that such mining does not eliminate any significant role currently

being performed by stakeholders, that it does not raise challenges and

barriers to text/data mining applications, that it does not threaten publishers

and librarians and their existence.

There is the rub. The battle will be whether the advantages which

text and data mining confer are sufficiently powerful and attractive to the

research community to enable it to sweep objections aside. At present all

we can hypothesise is that data and text mining will happen – is happening

in select areas – and will be another driver for change in the march towards

full electronic publishing over the next few years. But how soon depends

on a number of factors. Intellectual property rights and their protection will

be at the forefront of these.

Database Management System

B. Santhosh Kumar 134

Text and data mining creates a new way of using information. It

opens the horizons of researchers. But to fully appreciate the scope of the

technology it requires some training for the researcher and the inclusion

within their research process of text/data mining techniques.

Besides that it needs access to a large document database. As has

been mentioned, this creates problems with regard to licensing. But text

miners need text, and they need it in a form which is useful for the text

mining systems.

Open Access

A review of text and data mining is not complete if one ignores

other underlying trends in scientific communication. One of these is the

changing business models which have come about in the past 6-8 years (in

effect since the Budapest Initiative in 2002, the Bethesda Statement and the

Berlin Declaration in 2003).

Text mining is believed to have a considerable commercial value.

This is particularly true in scientific disciplines; in which highly relevant

(and therefore monetarisable) information is often contained within written

text. In recent years publishers have been effecting improvements to their

publication systems without opening the doors to text and data mining.

Some of the general initiatives taken, such as Nature's proposal for an Open

Text Mining Interface (OTMI) and NIH's common Journal Publishing

Document Type Definition (DTD) which has been adopted by many of the

larger publishers, do provide semantic cues to machines to answer specific

queries contained within text, but without going as far as removing

publisher barriers to public access.

However, an earlier ICSTI ‘Insight’ (January 2009) gave a detailed

expose of the open access movement. As far as text and data mining is

concerned the success of this process for information extraction relies

heavily on the ability to interrogate as wide a source of digital collections

as possible, unencumbered by access control and authentication procedures.

Gradually we are seeing open access come about, both in the ‘gold’ (author

Database Management System

B. Santhosh Kumar 135

pays) and the ‘green’ (self-deposition of items in subject or institutional

repositories). Though the tables on subscription and licensing systems

(which have been favoured by publishers in the past) have not been

overturned, there is a gradual erosion of open access into the subscription

system.

Some pundits claim that the ‘green’ movement has achieved a 15%

market share – though this is disputable – and the ‘gold’ route has a 20%

share (based on 4,000 journals being OA, though these journals are often

smaller in size and therefore exaggerates the true market share).

Nevertheless, there has been recent growing acceptance from one important

sector of the industry, notably the research funding agencies that support

for open access in all its forms is growing.

This means that over the next few years the amount of text which

will be available for text mining purposes will increase albeit gradually

rather than explosively. With regard to the data sources which are available

for mining, the picture is much better. Here there has been limited legacy

to protect raw datasets with authentication and access rights protocols.

In fact the European Commission adopted the position of

“Initiatives leading to wider dissemination of scientific information are

necessary, especially with regard to journal articles and research data

produced on the basis of public funding.” on 14 February 2007 at the time

of a major international conference held in Brussels to discuss in effect the

open access movement. At the time of this conference, commercial stm

publishers agreed among themselves that ‘data’ should be a free resource –

in effect washing their hands of the problems of managing and curating

data as an information resource for the scientific community.

“Raw research data should be made freely available to all

researchers. Publishers encourage the public posting of the raw data outputs

of research. Sets or sub-sets of data that are submitted with a paper to a

journal should wherever possible be made freely accessible to other

scholars”.

Database Management System

B. Santhosh Kumar 136

Open access of data is therefore more ripe for mining activities,

and this is reflected in some of the early text/data mining work involving

genomes, proteins etc in the area of bioinformatics. Open access is a

leading factor in bringing text and data mining to the Science community.

